JEE Questions for Maths Trigonometric Ldentities And Equations Quiz 2 - MCQExams.com


Maths-Trigonometric ldentities and Equations-54139.png
  • 0
  • 1/2
  • 3/2
  • 1
In a right angled triangle, if the hypotenuse is 2√2 times the length of perpendicular drawn from the opposite vertex on the hypotenuse, the the other two angles are
  • π/3 , π/6
  • π/4 , π/4
  • π/8 , 3π/8
  • π/12 , 5π/12

Maths-Trigonometric ldentities and Equations-54142.png
  • √3/4
  • 4/√3
  • 2/√3
  • √3/2
The value of tan α + 2 tan (2α) + 4 tan (4α) +...+2n-1 tan(2n-1α) + 2n cot (2nα) is
  • cot(2nα)
  • 2n tan(2nα)
  • 0
  • cot α
If tan A and tan B are the roots of χ2 - aχ + b = 0, then the value of sin2 (A + B) is

  • Maths-Trigonometric ldentities and Equations-54145.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54146.png

  • Maths-Trigonometric ldentities and Equations-54147.png

  • Maths-Trigonometric ldentities and Equations-54148.png

Maths-Trigonometric ldentities and Equations-54150.png

  • Maths-Trigonometric ldentities and Equations-54151.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54152.png

  • Maths-Trigonometric ldentities and Equations-54153.png

  • Maths-Trigonometric ldentities and Equations-54154.png

Maths-Trigonometric ldentities and Equations-54156.png

  • Maths-Trigonometric ldentities and Equations-54157.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54158.png

  • Maths-Trigonometric ldentities and Equations-54159.png

  • Maths-Trigonometric ldentities and Equations-54160.png
If sin 4A - cos 2A = cos 4A - sin 2A (where, 0 < A < π/then the value of tan 4A is
  • 1
  • 1/√3
  • √3

  • Maths-Trigonometric ldentities and Equations-54162.png

  • Maths-Trigonometric ldentities and Equations-54163.png

Maths-Trigonometric ldentities and Equations-54165.png
  • √2
  • √3
  • 2
  • 4
  • √5
The value of sin 20o (4 + sec 20o) is
  • 0
  • 1
  • √2
  • √3

Maths-Trigonometric ldentities and Equations-54168.png
  • (2 cosθ +(2 cos 2θ +(2 cos 4θ + 1)
  • (cos θ -(cos 2θ -(cos 4θ + 1)
  • (2 cos θ -(2 cos 2θ -(2 cos 4θ - 1)
  • (2 cos θ +(2 cos 2θ +(cos 4θ + 1)
The smallest value of 5 cos θ + 12 is
  • 5
  • 12
  • 7
  • 17
In ∆ABC, if sin2 A + sin2 B + sin2 C = 2, then the triangle is
  • right angle but need not be isosceles
  • right angled and isosceles
  • isosceles but need not be right angled
  • equilateral
The maximum value of 4sin2χ - 12 sinχ + 7 is
  • 25
  • 4
  • does not exist
  • None of these
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to
  • 4 sin A sin B sin C
  • 4 cos A cos B cos C
  • 2 cos A cos B cos C
  • 2 sin A sin B sin C
The minimum value of f(χ) = sin4 χ + cos4 χ , 0 ≤ χ ≤ π/2 is
  • 1/2√2
  • 1/4
  • -1/2
  • 1/2
The maximum value of the function 3 cos χ - 4 sin χ is
  • 2
  • 3
  • 4
  • 5
For all values of θ, the value of 3 - cos θ + cos (θ + π/lies in the interval
  • [-2 , 3]
  • [-2 , 1]
  • [2 , 4]
  • [1 , 5]
If A + B = C, then cos2 A + cos2 B + cos2 C - 2 cos A cos B cos C is equal to
  • 1
  • 2
  • 0
  • 3
sech-1 (1/- cosech-1 (3/equals

  • Maths-Trigonometric ldentities and Equations-54178.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54179.png

  • Maths-Trigonometric ldentities and Equations-54180.png

  • Maths-Trigonometric ldentities and Equations-54181.png
The curve represented by
χ = a (sinh θ + cos h θ)
y = b (-sinh θ + cosh θ) is
  • a hyperbola
  • a parabola
  • an ellipse
  • a circle
If sinh-1 (+ sinh-1 (= χ, the cosh χ is equal to

  • Maths-Trigonometric ldentities and Equations-54184.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54185.png

  • Maths-Trigonometric ldentities and Equations-54186.png

  • Maths-Trigonometric ldentities and Equations-54187.png

Maths-Trigonometric ldentities and Equations-54189.png
  • 2ee-χ/2
  • 2e-χ/2
  • e-χ

sech-1 (sin θ) is equal to
  • log tan θ/2
  • log sin θ/2
  • log cos θ/2
  • log cot θ/2
2 tanh-1 (1/is equal to
  • 0
  • log 2
  • log 3
  • log 4
sech-1 (1/2)is equal to
  • log (√3 + √2)
  • log (√3 + 1)
  • log(2 + √3)
  • None of these
The number of solutions of the equation (1 - cos 2χ) (cos 2χ + cot2 χ) = 0, 0 ≤ χ ≤ 2π is
  • 3
  • 2
  • 1
  • 0
The general solution of sin 3χ + sinχ - 3 sin 2χ = cos 3χ + cos χ - 3 cos 2χ is

  • Maths-Trigonometric ldentities and Equations-54195.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54196.png

  • Maths-Trigonometric ldentities and Equations-54197.png

  • Maths-Trigonometric ldentities and Equations-54198.png

Maths-Trigonometric ldentities and Equations-54200.png

  • Maths-Trigonometric ldentities and Equations-54201.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54202.png

  • Maths-Trigonometric ldentities and Equations-54203.png

  • Maths-Trigonometric ldentities and Equations-54204.png
The equation esinχ - e-sinχ - 4 = 0 has
  • infinite number of real roots
  • no real roots
  • exactly one real roots
  • exactly four roots
If sin 2χ = 4 cos χ, then χ is equal to

  • Maths-Trigonometric ldentities and Equations-54207.png
  • no value

  • Maths-Trigonometric ldentities and Equations-54208.png

  • Maths-Trigonometric ldentities and Equations-54209.png
The value of θ satisfying cos θ +√3 sin θ = 2 is
  • 30o
  • 60o
  • 45o
  • 90o
The possible values of θ ϵ (0,π) such that sin (θ) + sin (4θ) + sin (7θ) = 0 are

  • Maths-Trigonometric ldentities and Equations-54212.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54213.png

  • Maths-Trigonometric ldentities and Equations-54214.png

  • Maths-Trigonometric ldentities and Equations-54215.png
A value of θ satisfying 5θ - sin 3θ + sin θ = 0, such that 0 < θ < π/2 is
  • π/12
  • π/6
  • π/4
  • π/2
If sin θ + cos θ = 0 and 0 < θ < π, then θ is equal to
  • 0
  • π/4
  • π/2
  • 3π/4

Maths-Trigonometric ldentities and Equations-54219.png
  • 1
  • 3
  • 2
  • 4
The number of points of intersection of 2y = 1 and y = sin χ in -2π ≤ χ ≤ 2π is
  • 1
  • 2
  • 3
  • 4
The value of χ in (0, π/satisfying the equation sin χ cos χ = 1/4 is
  • π/6
  • π/3
  • π/8
  • π/4
  • π/12
The number of solutions of cos 2θ = sin θ in (0, 2π) is
  • 1
  • 2
  • 3
  • 4
  • 0
If sin 6θ + sin 4θ + sin 2θ = 0, then the general value of θ is

  • Maths-Trigonometric ldentities and Equations-54224.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54225.png

  • Maths-Trigonometric ldentities and Equations-54226.png

  • Maths-Trigonometric ldentities and Equations-54227.png
solution of the equation 3 tan (θ - 15o) = tan (θ + 15o) is
  • θ = nπ - π/3
  • θ = nπ + π/3
  • θ = nπ - π/4
  • θ = nπ + π/4
If 2 sec 2α = tan β + cot β, then one of the value of α + β is
  • π/4
  • π/2
  • π
  • n π - π/4, n ϵ I
The solutions of the equation 4 cos2 χ + 6 sin2χ = 5 are
  • χ = nπ ± π/4
  • χ = nπ ± π/3
  • χ = nπ ± π/2
  • χ = nπ ± 2π/3
If 5 cos 2θ + 2 cos2 θ/2 + 1 = 0, where 0 < θ < π, then the value of θ
  • π/3 ± π
  • π/3 , cos-1 (3/5)
  • cos-1 (3/± π
  • π/3 , π - cos-1 (3/
The number of solutions of the equation sinχ cos 3χ = sin 3χ cos 5χ in [0, π/2] is
  • 3
  • 4
  • 5
  • 6
If 1 + sin θ + sin2 θ +... = 4 + 2√3; 0 < θ < π, θ ≠ π/2, then
  • θ = π/3
  • θ = π/6
  • θ = π/3 or π/6
  • θ = π/3 or 2π/3
The most general solutions of the equation secχ - 1 = (√2 -tan χ are given by
  • nπ + π/8
  • 2nπ , 2nπ + π/4
  • 2nπ
  • None of these
The number of solutions of the equation sin 2χ + cos 4χ = 2 is
  • 0
  • 1
  • 2

The solution of sinχ + sin 5χ = sin 3χ in (0, π/is

  • Maths-Trigonometric ldentities and Equations-54239.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54240.png

  • Maths-Trigonometric ldentities and Equations-54241.png

  • Maths-Trigonometric ldentities and Equations-54242.png
If cot χ + cosec χ = √3 , then the principal value of (χ - π/6)
  • π/3
  • π/4
  • π/2
  • π/6
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers