JEE Questions for Maths Vector Algebra Quiz 1 - MCQExams.com

Out of the following which one is not true

  • Maths-Vector Algebra-60382.png
  • 2)
    Maths-Vector Algebra-60383.png

  • Maths-Vector Algebra-60384.png

  • Maths-Vector Algebra-60385.png

Maths-Vector Algebra-58607.png
  • 3 sq units
  • 4 sq units
  • 16 sq units
  • 9 sq units
Given that, |a|= 3, |b|= 4, |a ×b| = 10, then |a . b|2 is equal to
  • 88
  • 44
  • 22
  • None of these

Maths-Vector Algebra-58844.png
  • a
  • 2a
  • 3a
  • 0

Maths-Vector Algebra-58845.png

  • Maths-Vector Algebra-58846.png
  • 2)
    Maths-Vector Algebra-58847.png

  • Maths-Vector Algebra-58848.png

  • Maths-Vector Algebra-58849.png

Maths-Vector Algebra-58850.png
  • 8 units
  • 9 units
  • 10 units
  • 11 units

Maths-Vector Algebra-58851.png
  • {a, b2, c3}
  • {a, b2, c4}
  • {a, b1, c1}
  • {a, b1, c2}

Maths-Vector Algebra-58583.png
  • √18
  • √72
  • √33
  • √45
If the position vectors of the vertices of ∆ABC are
Maths-Vector Algebra-58585.png
  • right angle and isosceles
  • right angled but not isosceles
  • isosceles but not right angled
  • equilateral
If the vectors a + λb + 3c, – 2a + 3b – 4c and a – 3b + 5c are coplanar, then the value of λ is
  • 2
  • –1
  • 1
  • –2
If the position vector of A with respect to O is
Maths-Vector Algebra-58588.png

  • Maths-Vector Algebra-58589.png
  • 2)
    Maths-Vector Algebra-58590.png

  • Maths-Vector Algebra-58591.png

  • Maths-Vector Algebra-58592.png
If a, b, c are three non - coplanar vectors and p, q, r reciprocal vectors, then (la + mb + nc). (lp + mq + nr) is equal to
  • l + m + n
  • l3 + m3 + n3
  • l2 + m2 + n2
  • None of these
Let u, v and w be vectors such that u + v + w = 0. If |u| = 3 |v| = 4 and |w| = 5, then u.v + v.w + w.u is equal to
  • 0
  • –25
  • 25
  • 50
  • 47

Maths-Vector Algebra-58594.png
  • sin-1 (1/9)
  • cos-1 (8/9)
  • sin-1 (8/9)
  • cos-1 (1/9)
If a, b and c are perpendicular to b + c, c + a and a + b, respectively and if |a + b| = 6, |b + c| = 8 and |c + a| = 10, then |a + b + c| is equal to
  • 5√2
  • 50
  • 10√2
  • 10

Maths-Vector Algebra-58596.png

  • Maths-Vector Algebra-58597.png
  • 2)
    Maths-Vector Algebra-58598.png

  • Maths-Vector Algebra-58599.png

  • Maths-Vector Algebra-58600.png

  • Maths-Vector Algebra-58601.png

Maths-Vector Algebra-58602.png
  • 3
  • 9
  • 20
  • None of these
If x + y + z = 0, |x| = |y| = |z|= 2 and θ is angle between y and z, then the value of cosec2 θ is
  • 4/3
  • 5/3
  • 1/3
  • 1

Maths-Vector Algebra-58604.png
  • 15/4
  • 15/2
  • 15
  • 15√3/2
  • 15√3

Maths-Vector Algebra-58605.png
  • 4√6 units
  • 1/2 (√sq units
  • √6/2 sq units
  • √6 units
The magnitude of cross product of two vectors is √3 times the dot product. The angle between the vector is
  • π/6
  • π/3
  • π/2
  • π/4

Maths-Vector Algebra-58606.png
  • √57
  • √39
  • 12
  • 17
Area of diagonals is, ..., where diagonals are
Maths-Vector Algebra-58608.png
  • √21.5
  • √31.5
  • √28.5
  • √38.5

Maths-Vector Algebra-58609.png
  • a = 3, b = 1
  • a = 9, b = 1
  • a = 3, b = 3
  • a = 9, b = 3
If |a × b| = 4 and |a ∙ b|= 2, then |a|2 |b|2 is equal to
  • 6
  • 2
  • 20
  • 8
If r ∙ a = r ∙ b = r ∙ c = 0 for some non -zero vector r, then the value of [a b c] is
  • 2
  • 3
  • 0
  • None of these

Maths-Vector Algebra-58610.png
  • 2
  • 1
  • 3
  • –1
  • 0
Volume of the parallelopiped having vertices at O ≡ (0, 0, 0), A ≡ (2, –2, 1), B ≡ (5, –4,and c ≡ (1, –2,is
  • 5 cu units
  • 10 cu units
  • 15 cu units
  • 20 cu units
If the volume of the parallelopiped with a, b and c as coteminous edges is 40 cu units, then the volume of the parallelopiped having b + c, c + a and a + b as coterminous edges in cubic units is
  • 80
  • 120
  • 160
  • 40

Maths-Vector Algebra-58612.png
  • 0
  • 1
  • 2
  • 3
If α = x (a × b) + y (b × c) + z(c × a) and [a b c] = 1/8 then x + y + z is equal to
  • 8 α. (a + b + c)
  • α . (a + b + c)
  • 8(a + b + c)
  • None of these

Maths-Vector Algebra-58614.png
  • only λ
  • only μ
  • both λ and μ
  • neither λ nor μ

Maths-Vector Algebra-58615.png
  • 12
  • 2
  • 0
  • –12
The value of λ, for which to four points
Maths-Vector Algebra-58616.png
  • 2
  • 4
  • 6
  • 8

Maths-Vector Algebra-58617.png
  • an equilateral triangle
  • an isosceles triangle
  • a right angled triangle
  • collinear

Maths-Vector Algebra-58619.png
  • 5/8
  • 8/5
  • – (7/4)
  • 2/3

Maths-Vector Algebra-58620.png
  • 0
  • 1
  • 2
  • –1

Maths-Vector Algebra-58621.png
  • exactly two values of λ
  • exactly three values of λ
  • no real value of λ
  • exactly one value of λ

Maths-Vector Algebra-58622.png
  • 2
  • 4
  • 6
  • 8

Maths-Vector Algebra-58623.png
  • 4
  • 2/3
  • 1/6
  • 1/3

Maths-Vector Algebra-58624.png
  • neither x nor y
  • both x and y
  • only x
  • only y

Maths-Vector Algebra-58625.png
  • 1
  • 2
  • 0

If a, b, c are non - coplanar vectors and (a – λb) . (b – 2c) × (c + 2a) = 0, then λ is equal to
  • 1
  • 1/4
  • 0
  • –1/4

Maths-Vector Algebra-58626.png
  • the harmonic mean of a and b
  • equal to zero
  • the arithmetic mean of a and b
  • the geometric mean of a and b

Maths-Vector Algebra-58627.png
  • –1
  • 0
  • 1
  • 1/2

Maths-Vector Algebra-58628.png
  • 47
  • 74
  • –74
  • None of these
[a + b b + c c + a] = [a b c], then
  • [a b c] = 1
  • a, b, and c are coplanar
  • [a b c] = –1
  • a, b and c are mutually perpendicular
The point collinear with (1, –2, –and (2, 0,among the following is
  • (0, 4, 6)
  • (0, –4, –5)
  • (0, –4, –6)
  • (0, –4, 6)

Maths-Vector Algebra-58629.png
  • 0
  • 2)
    Maths-Vector Algebra-58630.png

  • Maths-Vector Algebra-58631.png

  • Maths-Vector Algebra-58632.png

Maths-Vector Algebra-58633.png
  • 0
  • 1
  • 2
  • 3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers