Analyze the graph and determine its standard form
mt-7 sb-1-Parabolasimg_no 76.jpg
  • y=3(x2)+2y=3\left(x^2\right)+2y=3(x2)+2
  • y=(x−3)2+2y=\left(x-3\right)^2+2y=(x−3)2+2
  • y=2(x+3)2+2y=2\left(x+3\right)^2+2y=2(x+3)2+2
  • y=(x+3)2−2y=\left(x+3\right)^2-2y=(x+3)2−2
  • y=(x−3)2−2y=\left(x-3\right)^2-2y=(x−3)2−2
Analyze the graph and determine its standard form
mt-7 sb-1-Parabolasimg_no 77.jpg
  • y=3(x2)+2y=3\left(x^2\right)+2y=3(x2)+2
  • y=(x−3)2+2y=\left(x-3\right)^2+2y=(x−3)2+2
  • y=2(x+3)2+2y=2\left(x+3\right)^2+2y=2(x+3)2+2
  • y=(x+3)2−2y=\left(x+3\right)^2-2y=(x+3)2−2
  • y=(x−3)2−2y=\left(x-3\right)^2-2y=(x−3)2−2
Where is the focus of this parabola?
mt-7 sb-1-Parabolasimg_no 78.jpg
  • F(-2,-2)
  • F(-2,-3)
  • F(3,2)
  • F(3, 1.75)
  • F(3, 2.25)
Where is the directrix of this parabola?
mt-7 sb-1-Parabolasimg_no 79.jpg
  • y = -2
  • y= -3
  • y= 2
  • y= 1.75
  • y = 2.25
Where is the axis of symmeetry of this parabola?
mt-7 sb-1-Parabolasimg_no 80.jpg
  • x = -2
  • x= -3
  • x= 2
  • y= -3
  • y = 2
What is the difference between this two parabolas?
mt-7 sb-1-Parabolasimg_no 81.jpg
  • The h coordinate
  • The k coordinate
  • The Vertex
  • The axis of symmetry
  • The a coefficient
Where is the center of the following parabola? x=14(y+2)2−10x=\frac{1}{4}\left(y+2\right)^2-10x=41​(y+2)2−10  
  • (2,-10)
  • (-2,-10)
  • (1/4, 10)
  • (-10,-2)
  • (-10,2)
Where is the focus of this parabola found with respect to its center? x=14(y+2)2−10x=\frac{1}{4}\left(y+2\right)^2-10x=41​(y+2)2−10  
  • to the left
  • to the right
  • above it
  • below it
  • it can´t be determined
To what direction does this parabola open? x=14(y+2)2−10x=\frac{1}{4}\left(y+2\right)^2-10x=41​(y+2)2−10  
  • to the left
  • to the right
  • above it
  • below it
  • it can´t be determined
Which equation would give the graph of a parabola?
  • y = 2x - 3
  • y = x2 + 1
  • y = x2 + 4
Is the following parabola concave up or concave down?
mt-4 sb-2-Parabolasimg_no 84.jpg
  • Concave down
  • Concave up
  • Neither
How can you tell whether a parabola is facing up or facing down by looking at the equation?
  • The vertex tells you the direction of the opening
  • The value of "a" tells you the direction of the opening.
  • All parabolas open upward
  • All parabolas open downward
If the a value is positive in the equation of y = ax2 + c, which direction does the graph open?
  • up
  • down
  • left
  • right
If the a value is negative in the equation y = ax2 + c , which direction does the parabola open?
  • up
  • down
  • left
  • right
The X axis goes...
mt-4 sb-2-Parabolasimg_no 85.jpg
  • Horizontally, or across
  • Vertically, or up and down
The Y axis goes...
mt-4 sb-2-Parabolasimg_no 86.jpg
  • Vertically, or up and down
  • Horizontally, or across
Which letter in a equations y = ax2 + c represents the y-intercept?
  • a
  • b
  • c
What is the y-intercept of the parabola y = 5x2 - 3
  • 5
  • 3
  • - 3
  • -5
What is the y-intercept of the parabola?
mt-4 sb-2-Parabolasimg_no 87.jpg
  • -4
  • 4
  • -3
  • 0
What is the equation of this graph?
mt-4 sb-2-Parabolasimg_no 92.jpg
  • y = x2 + 1
  • y = - x2 + 1
  • y = x2
  • y = - x2
What is the equation of the following graph?
mt-4 sb-2-Parabolasimg_no 93.jpg
  • y = 2x2
  • y = x2 + 2
  • y = x2 - 2
  • y = - 2x2
Which equation will result in the parabola being a narrower graph?
  • y = 2x2 + 1
  • y = 7x2 - 1
  • y = 0.5x2 + 1
  • y = x2
The equation of the parabola is:
mt-4 sb-2-Parabolasimg_no 98.jpg
  • y = x + 2
  • y = x2 + 2
  • y = x - 2
  • y = x2 - 2
What is the equation of this graph?
mt-4 sb-2-Parabolasimg_no 99.jpg
  • y = - x2
  • y = - x2 - 3
  • y = - x2 + 3
  • y = x2 + 3
Which equation would result in the parabola being wider?
  • y = 0.5x2 + 2
  • y = x2
  • y = 10x2 + 7
  • y = - 3x2 - 2
0:0:1



Answered

Not Answered

Not Visited
Correct : 0
Incorrect : 0