Between the plates of a parallel plate capacitor a dielectric plate is introduced just to fill the space between the plates. The capacitor is charged and later disconnected from the battery. The dielectric plate is slowly drawn out of the capacitor parallel to the plates. The plot of the potential difference across the plates and the length of the dielectric plate drawn out is

Equipotential surfaces are shown in figure. Then the electric field strength will be

  • 100 Vm–1 along X-axis

  • 100 Vm–1 along Y-axis

  • 200 Vm–1 at an angle 120o with X-axis

  • 50 Vm–1 at an angle 120o with X-axis

A condenser of 2μF capacitance is charged steadily from 0 to 5 Coulomb. Which of the following graphs correctly represents the variation of potential difference across its plates with respect to the charge on the condenser?

In an RC circuit while discharging, the graph of log i versus time is as shown by the dotted line in the diagram figure, where i is the current. When the value of the resistance is doubled, which of the solid curve best represents the variation of log i versus time ?

  • P

  • Q

  • R

  • S

Figure shows a solid hemisphere with a charge of 5nC distributed uniformly through its volume. The hemisphere lies on a plane and point P is located on the plane, along a radial line from the centre of curvature at distance 15 cm. The electric potential at point P due to the hemisphere, is –

  •    150 V                                       

  •    300 V

  •    450 V                                       

  •    600 V

A point charge Q is placed at a distance d from the centre of an uncharged conducting sphere of radius R. The potential of the sphere is (d > R) –

  •  14π 0.Qd-R                     

  •  14π 0.Qd

  •  14π 0.QR                             

  • zero

An electric field is given by Ex =  2x3 kN/C. The potential of the point (1, –2), if potential of the point (2, 4) is taken as zero, is –

  •   -7.5×103 V                     

  •   7.5×103 V

  •   -15×103 V                     

  •   15×103 V

A conducting disc of radius R is rotating about its axis with an angular velocity ω. Then the potential difference between the centre of the disc and its edge is (no magnetic field is present)

  • zero                           

  •  meω2R22e

  •  meωR33e                     

  •  emeωR22

A uniform electric field of 400 V/m exists in space as shown in graph. Two points A and B are also shown with their co-ordinates. The potential difference VB  VA in volts, is – 

  •    18 V                           

  •    15 V

  •    8 V                             

  •    12 V

Figure shows three circular arcs, each of radius R and total charge as indicated. The net electric potential at the centre of curvature is –

  •  Q2πε0R                               

  •  Q4πε0R

  •  2Qπε0R                                 

  •  Qπε0R

A neutral conducting spherical shell is kept near a charge q as shown. The potential at point P due to the induced charges is –

                               

  •  kqr                                                 

  •  kqr'

  •  kqr-kqr'                                         

  •  kqCP

Two concentric uniformly charged spheres of radius 10 cm and 20 cm. are arranged as shown in figure. Potential difference between the sphere is –

               

  •   4.5×1011 V                         

  •   2.7×1011 V

  •   0                                             

  •   None of these

In a uniform field – 

  • all points are at the same potential 

  • pairs of points separated by the same distance must have the same potential difference 

  • no two points can have the same potential 

  • none of the above

Two metallic bodies separated by a distance of 20 cm, are given equal and opposite charges of the magnitude of 0.88μC. The component of the electric field along the line AB, between the plates, varies as, Ex=(3x2 + 0.4) N/C where x (in meters) is the distance from one body towards the other body as shown.

  • The capacitance of the system is 10F 

  • The capacitance of the system is 20F 

  • The potential difference between A and C is 0.088 volt 

  • The potential difference between A and C is cannot be determined from the given data 

Electrical potential ‘v’ in space as a function of coordinates is given by, v=1x+1y+1z . Then the electric field intensity at (1, 1, 1) is given by –

  •   -i^+j^+k^                         

  •   i^+j^+k^

  •   zero                                           

  •   13i^+j^+k^

Two concentric, thin metallic spheres of radii R1 and R2 R1 > R2 bear changes Q1 and Q2 respectively. Then the potential at distance r between R1 and R2 will be k=14πε0

  •   k Q1+Q2r                       

  •   k Q1r+Q2R2

  •   k Q2r+Q1R1                     

  •   k Q1R1+Q1R2 

The grid (each square of 1m × 1m), represents a region in space containing a uniform electric field.

If potentials at points O, A, B, C, D, E, F and G, H are respectively 0, –1, –2, 1, 2, 0, –1, 1 and 0 volts, find the electric field intensity –

     

  •  i^+j^ V/m                           

  •  i^-j^ V/m

  •  -i^+j^ V/m                         

  •  -i^-j^ V/m

Figure shows an electric line of force which curves along a circular arc.

                     

The magnitude of electric field intensity is same at all points on this curve and is equal to E. If the potential at A is V, then the potential at B is –

  •  V-ERθ                             

  •  V-E2R sin θ2

  •  V+ERθ                             

  •  V+2ER sin θ2

A parallel plate capacitor with air between the plates is charged to a potential difference of 500V and then insulated. A plastic plate is inserted between the plates filling the whole gap. The potential difference between the plates now becomes 75V. The dielectric constant of plastic is –

  •   10/3                           

  •   5 

  •   20/3                           

  •   10

The circuit was in the shown state for a long time. Now if the switch S is closed then the charge that flows through the switch S, will be –

      

  •   4003 μC                               

  •   100 μC

  •   1003 μC                               

  •   50 μC

A capacitor of 1 µF withstands a maximum voltage of 6 kilovolts while another capacitor of 2 µF withstands a maximum voltage of 4 kilovolts. If the two capacitors are connected in series, the system will withstand a maximum voltage of:

  •   2 kV                 

  •   4 kV 

  •   6 kV                 

  •   9 kV

The potential at a certain point in an electric field is 200 V. The work done in carrying an electron upto that point will be.

  •   3.2×10-17 J                      

  •   -3.2×10-17 J

  •   200 J                                     

  •   -200 J

Two charged conducting spheres of radii r1 and r2 are at the same potential. The ratio of their surface charge densities will be -

  •   r1/r2                               

  •   r2/r1

  •   r12/r22                           

  •   r22/r12

At the mid point of a line joining an electron and a proton, the values of E and V will be.

  •  E=0, V0                   

  •  E0, V=0

  •  E0, V0                   

  •  E=0, V=0

A charge of 10µC is kept at the origin of XY coordinate system. The potential difference in volts between two points (a, 0) and a/2 , a/2 will be.

  •   Zero                             

  •   9×104

  •   9×104a                           

  •   9×1042

Find equivalent capacitance between X and Y if each capacitor is 4 μF.

    

  •   4 μF                                     

  •   2 μF

  •   12 μF                                   

  •   1 μF

Two point charge of 8 μC and 12 μC are kept in air at a distance of 10 cm from each other. The work required to change the distance between them to 6 cm will be.

  •   5.8 J                       

  •   4.8 J

  •   3.8 J                       

  •   2.8 J

Two parallel plate capacitors of capacitances C and 2C are connected in parallel and charged to a potential difference V. The battery is then disconnected and the region between the plates of the capacitor C is completely filled with a material of dielectric constant K. The potential difference across the capacitors now becomes –

  •   3VK+2                             

  •   KV

  •   VK                                 

  •   3KV

Maximum charge stored on a metal sphere of radius 15 cm may be 7.5 µC. The potential energy of the sphere in this case is :

  •   9.67 J                   

  •   0.25 J 

  •   3.25 J                    

  •   1.69 J

Four identical particles each of mass m and charge q are kept at the four corners of a square of length L. The final velocity of these particles after setting them free will be.

  •  Kq2mL5.41/2                           

  •  Kq2mL1.351/2

  •  Kq2mL2.71/2                           

  • Zero

0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Physics Quiz Questions and Answers