Two particles P and Q start from origin and execute Simple Harmonic Motion along X-axis with same amplitude but with periods 3 seconds and 6 seconds respectively. The ratio of the velocities of P and Q when they meet is -

  •    1 : 2                 

  •   2 : 1

  •    2 : 3                 

  •   3 : 2

The angular velocities of three bodies in simple harmonic motion are ω1,ω2,ω3 with their respective amplitudes as A1,A2,A3. If all the three bodies have same mass and maximum velocity, then

(a) A1ω1=A2ω2=A3ω3        (b)  A1ω12=A2ω22=A3A32

(b) A12ω1=A22ω2=A32ω3   (d) A12ω12=A22ω22=A2  

  • 1
  • 2
  • 3
  • 4

The amplitude of a particle executing SHM is 4 cm. At the mean position the speed of the particle is 16 cm/sec. The distance of the particle from the mean position at which the speed of the particle becomes 83cm/sec will be

  •          23cm             

  •   3cm

  •          1 cm                   

  •   2 cm

The maximum velocity of a simple harmonic motion represented by y=3 sin 100t+π6 is given by

  •        300       

  •    3π6

  •       100         

  •    π6

The displacement equation of a particle is x=3sin 2t+4cos 2t  The amplitude and maximum velocity will be respectively

  • () 5, 10      

  • () 3, 2

  • () 4, 2       

  • () 3, 4

The instantaneous displacement of a simple pendulum oscillator is given by x=A cos ωt+π4 . Its speed will be maximum at time

  •  π4ω      

  •  π2ω

  •  πω                

  •  2πω

The amplitude of a particle executing S.H.M. with frequency of 60 Hz is 0.01 m. The maximum value of the acceleration of the particle is

(a)      144π2m/sec2        (b)     144m/sec2

c)      144π2m/sec2           (d)     288π2m/sec2   

  • 1
  • 2
  • 3
  • 4

A particle moving along the x-axis executes simple harmonic motion, then the force acting on it is given by

  •    – A Kx           

  •    A cos (Kx)

  •    A exp (– Kx

  •    A Kx

What is the maximum acceleration of the particle doing the SHM y=2sinπt2+ϕ where 2 is in cm

(a)  π2cm/s2                 (b)    π22cm/s2

(c)    π4cm/s2               (d)    π4cm/s2

  • 1
  • 2
  • 3
  • 4

A particle executes simple harmonic motion along a straight line with an amplitude A. The potential energy is maximum when the displacement is

  •      ±A          

  •     Zero

  •      ±A2         

  •    ±A2

The potential energy of a particle with displacement X depends as U(X). The motion is simple harmonic, when (K is a positive constant)

  •  U=KX22                 

  •  U=KX2   

  •   U=K                       

  •  U=KX 

A rectangular block of mass m and area of cross-section A floats in a liquid of density ρ. If it is given a small vertical displacement from equilibrium, it undergoes oscillation with a time period T. Then:

  •  Tρ
  •  T1A
  •  T1ρ
  •  T1m

The angular velocity and the amplitude of a simple pendulum is ω and a respectively. At a displacement X from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is 

  •      X2ω2a2-X2ω2       

  •     X2/a2-x2

  •    a2-X2ω2/X2ω2       

  •    (a2-x2)/X2

A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy changes into potential energy, will be

  •    f/2         

  •   f

  •    2 f        

  •   4 f

There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force ,F=-Kx where x is the displacement. The total energy of body depends upon -

  •    K, x         

  •   K, a

  •    K, a, x    

  •   K, a, v

The potential energy of a simple harmonic oscillator when the particle is half way to its end point is (where E is the total energy)

  •     18E       

  •         14E

  •     12E       

  •         23E

A body executes simple harmonic motion. The potential energy (P.E.), the kinetic energy (K.E.) and total energy (T.E.) are measured as a function of displacement x. Which of the following statements is true ?

  •   P.E. is maximum when x = 0

  •   K.E. is maximum when x = 0

  •   T.E. is zero when x = 0

  •   K.E. is maximum when x is maximum

­­A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration g4 , then the period of the pendulum will be

  • T

  •  T4

  •  2T5

  •  2T5

The total energy of a particle, executing simple harmonic motion is

  •      x                 

  •      x2

  •    Independent of x 

  •      x1/2

The bob of a pendulum of length l is pulled aside from its equilibrium position through an angle θ and then released. The bob will then pass through its equilibrium position with a speed v, where v equals

  •  2gl(1-sinθ)

  •  2gl(1+cosθ)

  •  2gl(1-cosθ)

  •  2gl(1+sinθ)

A body is executing Simple Harmonic Motion. At a displacement x its potential energy is E1 and at a displacement y its potential energy is E2. The potential energy E at displacement x+y is 

  •   E=E1+E2   

  •   E=E1+E2

  •    E=E1+E2           

  •   None of these.

In a simple pendulum, the period of oscillation T is related to length of the pendulum l as

  •  lT=constant
  •  l2T=constant
  •  lT2=constant
  •  l2T2=constant

The equation of motion of a particle is d2ydt2+Ky=0 where K is positive constant. The time period of the motion is given by

  •  2πK             

  •  2πK

  •  2πK           

  •   2πK

The kinetic energy of a particle executing S.H.M. is 16 J when it is in its mean position. If the amplitude of oscillations is 25 cm and the mass of the particle is 5.12 kg, the time period of its oscillation is -

  •  π5sec       

  •  2π sec

  •  20π sec   

  •  5π sec

A pendulum has time period T. If it is taken on to another planet having acceleration due to gravity half and mass 9 times that of the earth, then its time period on the other planet will be

  •  T

  • T

  •  T1/3

  •  2T

A simple pendulum hanging from the ceiling of a stationary lift has a time period T1. When the lift moves downward with constant velocity, then the time period becomes T2. It can be concluded that 

  •  T2 is infinity

  •  T2>T1

  •  T2<T1

  •  T2=T1

If the length of a pendulum is made 9 times and mass of the bob is made 4 times, then the value of time period will become

  • 3T

  • 3/2T

  • 4T

  • 2T

A simple harmonic wave having an amplitude a and time period T is represented by the equation y=5 sinπt+4m Then the value of amplitude (a) in (m) and time period  (T) in second are       

  •    a=10, T=2   

  •  a=5, T=1

  •     a=10, T=1    

  •  a=5, T=2

The period of a simple pendulum measured inside a stationary lift is found to be T. If the lift starts accelerating upwards with acceleration of g/3 then the time period of the pendulum is

  •  T3

  •  T3

  •  32T

  •  3T

The time period of a simple pendulum of length L as measured in an elevator descending with acceleration g3 is

  •  2π3Lg

  •  π3Lg

  •  2π3L2g

  •  2π2L3g

0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Physics Quiz Questions and Answers