Explanation
Consider the diagram shown in the question.
Given:
$$AB=AC$$
$$\angle BOC=100{}^\circ $$
$$\Rightarrow \angle BAC=50{}^\circ $$ (angle at the circle is half of angle at the centre by same chord $$\left( BC \right)$$)
Consider the quadrilateral $$OBAC$$.
$$\angle BOC$$ (of the quadrilateral) $$=360{}^\circ -100{}^\circ =260{}^\circ $$
Consider triangle $$OBC$$.
$$\angle OBC=\angle OCB$$ ($$OB$$ and $$OC$$ are radius)
Similarly, in $$\Delta ABC$$,
$$\angle ABC=\angle ACB$$ (Since, $$AB=AC$$)
$$ \angle ABO+\angle OBC=\angle ACO+\angle OCB $$
$$ \Rightarrow \angle ABO=\angle ACO $$
We know that interior angles of a quadrilateral are $$360{}^\circ $$. Therefore,
$$ 50{}^\circ +260{}^\circ +\angle ABO+\angle ACO=360{}^\circ $$
$$ 2\angle ACO=50{}^\circ $$
$$ \angle ACO=25{}^\circ $$
Given- $$A, B$$ & $$C$$ are points such that $$AB=12cm$$ and $$BC=16cm$$ and $$BC\bot AB$$.
To find out- the radius of the circle passing through $$A, B$$ & $$C=?$$
Solution- $$BC\bot AB$$ i.e $$\angle ABC={ 90 }^{ 0 }$$ and $$\Delta ABC$$ is a right one with $$AC$$ as hypotenuse. $$\therefore AC=\sqrt { { AB }^{ 2 }+{ BC }^{ 2 } } =\sqrt { { 12 }^{ 2 }+{ 16 }^{ 2 } } cm=20cm$$. So the circle passing through $$A, B$$ & $$C$$ will have its diameter as $$AC$$.
$$\therefore$$ Its radius$$=\dfrac { 1 }{ 2 } \times 20cm=10cm.$$
Ans- Option C.
It is given that, Diameter, $$AD = 34$$ cm and chord, $$AB = 30$$ cm
Draw a perpendicular $$ON$$ from $$O$$ to $$AB$$. It meets $$AB$$ at $$N$$.
$$ \therefore$$ Radius, $$AO=\dfrac { 1 }{ 2 } AD=\dfrac { 1 }{ 2 } \times 34$$ cm $$=17$$ cm.
$$\because ON\bot AB$$
$$ \therefore ON$$ bisects $$AB$$ at $$N$$ and $$\angle ANO=90^0$$
So, $$AN=\dfrac { 1 }{ 2 }AB=\dfrac { 1 }{ 2 } \times 30$$ cm $$=15$$ cm
Now, $$AO=17$$ cm, $$AN=15$$ cm and $$\angle ANO=90^0$$
$$\therefore \Delta AON$$ is a right one with hypotenuse $$AO.$$
So, by pythagoras theorem, we have
$${ AO }^{ 2 }-{ AN }^{ 2 }={ ON }^{ 2 }\Rightarrow { ON }^{ 2 }={ (17 }^{ 2 }{ -15 }^{ 2 })\ { cm }^{ 2 }$$
$$ \Rightarrow ON=8$$ cm
So, $$AB$$ is at a distance of $$8$$ cm from the centre $$O$$.
Please disable the adBlock and continue. Thank you.