Processing math: 0%

CBSE Questions for Class 9 Maths Circles Quiz 4 - MCQExams.com

If A, B, C, D are four points such that BAC=30 & BDC=60, then D is the center of the circle through A, B and C. The statement is
  • sometimes true
  • false
  • true
  • none of the above.
In the given figure, ABCD is a cyclic quadrilateral in which \angle BAD = 120^o. Then m\angle BCD is:
243066_0725f33120cc46fdb770293bb875f21c.png
  • 240^o
  • 60^o
  • 120^o
  • 180^o
The angles of a cyclic quadrilateral ABCD are A = (6x + 10) , B = (5x), C = (x + y), D = (3y -10).
Find x and y, and hence find the values of the four angles.
  • x = 10, y = 30, A =120^o, B=100^o, C= 506O, D=806o
  • x = 20, y = 30, A =130^o, B=100^o, C= 50^o, D=80^o
  • x = 18, y = 30, A =140^o, B=100^o, C= 50^o, D=84^o
  • x = 30, y = 30, A =180^o, B=100^o, C= 50^o, D=80^o
In given figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of \angle ACD+\angle BED.

78031_ad62dd911a644359ba6b9d8fabf366fc.jpg
  • { 540 }^{ o }
  • { 270 }^{ o }
  • { 180 }^{ o }
  • { 120 }^{ o }
If the sum of the circumferences of two circles with radii R_1 and R_2 is equal to the circumference of a circle of radius R, then
  • R_{1}+R_{2}=R
  • R_{1}+R_{2}>R
  • R_{1}+R_{2} < R
  • Nothing definite can be said about the relation among R_1, R_2 and R.
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
Area of the largest triangle that can be inscribed in a semi-circle of radius r units is
  • r^2 sq. units
  • \dfrac{1}{2} r^2 sq. units
  • 2r^2 sq. units
  • \sqrt{2} r^2 sq. units
A quadrilateral ABCD is inscribed in a circle such that AB is a diameter and  \angle ADC={ 130 }^{ o }, then m\angle BAC= ?
  • { 90 }^{ o }
  • { 50 }^{ o }
  • { 40 }^{ o }
  • { 30 }^{ o }
In the given figure, if \angle AOC=110^o, then the values of \angle D and \angle B, respectively are:
200195.PNG
  • 55^o, 125^o
  • 55^o,110^o
  • 110^o,25^o
  • 125^o,55^o
In the below diagram, O is the centre of the circle, AC is the diameter and if \angle APB=120^0, then \angle BQC is
92769.jpg
  • 30^0
  • 150^0
  • 90^0
  • 120^0
In the figure AD||BC;\ \angle CAB = 45^{\circ} ;\ \angle DBC = 55^{\circ}, then \angle DCB equals:

84434_d88a284eb88e40d39f8dbb0f3c04251e.png
  • 55^{\circ}
  • 80^{\circ}
  • 100^{\circ}
  • 120^{\circ}
Which of the following statement (s) is/ are true?
  • Two chords of a circle equidistant from the centre are equal
  • Equal chords in a circle subtend equal angles at the centre
  • Angle in a semicircle is a right angle
  • All of the above
In the figure  \angle ADC={ 130 }^{ o }  and chord BC = chord BE. Find \angle CBO .

78028.png
  • 40^o
  • 50^o
  • 60^o
  • 100^o
In the figure, \angle B is equal to:

98727_67c58fb3a00445dea69e4ff42b97104a.png
  • 80^{\circ}
  • 95^{\circ}
  • 70^{\circ}
  • 115^{\circ}
If O is the centre of a circle, AB its chord, C is the mid point of AB , then OAC is
  • an acute angled
  • an obtuse angled
  • a right angled triangle
  • an isosceles triangle
The angle made by the line from the centre with the chord which it bisects is:
  • 90^0
  • 30 ^0
  • 45^0
  • None of these
The greatest angle of a cyclic quadrilateral ABCD in which \angle A = (2x-1)^o, \angle B = (y+5)^o, \angle C = (2y+15)^o and \angle D = (4x-7)^o is:
  • 115^o
  • 120^o
  • 125^o
  • 130^o

Statement 1: In given figure, if C is centre of the circle and \angle PQC = 25^{\circ} and \angle PRC = 15^{\circ}, then \angle QCR is 40^{\circ}.

Statement 2: Angle subtended by arc at the centre is twice angled subtended by it at circumference of the circle.

108065_c892369f60444924a6dd93e491149376.png
  • Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1
  • Statement - 1 is True, Statement - 2 is True : Statement 2 is NOT a correct explanation for Statement - 1
  • Statement - 1 is True, Statement - 2 is False
  • Statement - 1 is False, Statement - 2 is True
Find the smallest angle of a cyclic quadrilateral ABCD in which \angle A= (2x-10)^o, \, \, \angle B=(2y-20)^o, \, \, \angle C= (2y+30)^o and \angle D=(3x+10)^o.
  • 80^0
  • 50^0
  • 85^0
  • 40^0
In the given circle with centre 'O', the mid points of two equal chords AB & CD are K & L, respectively. If \angle OLK = 25^{\circ}, Then \angle LKB is equal to:
198680.PNG
  • 125^{\circ}
  • 115^{\circ}
  • 105^{\circ}
  • 90^{\circ}
ABCD is a cyclic quadrilateral. If \angle  A-\angle C=30^{\circ}, then  \angle  C =?
  • 90^{\circ}
  • 115^{\circ}
  • 60^{\circ}
  • 75^{\circ}
In a circle of radius 17cm two parallel chords of the length 30cm and 16cm respectively are drawn on the opposite sides of the centre. Then  the distance between them  is
  • 7cm
  • 12cm
  • 23cm
  • 32cm
In a circle of radius 13cm, PQ and RS are two parallel chords of length 24cm and l0cm respectively. The chords are on the same side of the centre then the distance between the chords  is?
  • 7cm
  • 12cm
  • 5cm
  • 10cm
In the given figure, POQ is the diameter of the circle with center O. Quadrilateral PQRS is a cyclic quadrilateral and SQ is joined. If \angle R = 138^\circ, then m\angle PQS is:
243068_93b47ecce9b64c02bbec18c4e24174bc.png
  • 90^\circ
  • 42^\circ
  • 48^\circ
  • 38^\circ
Find the four angles of a cyclic quadrilateral ABCD in which \angle A=(2x-1)^o, \angle B=(y+5)^o, \angle C=(2y+15)^o and \angle D(4x-7)^o
  • \angle A=25^o, \angle B=45^o, \angle C=105^o, \angle D=135^o
  • \angle A=35^o, \angle B=75^o, \angle C=95^o, \angle D=135^o
  • \angle A=45^o, \angle B=75^o, \angle C=95^o, \angle D=125^o
  • \angle A=65^o, \angle B=55^o, \angle C=115^o, \angle D=125^o
ABCD is a cyclic quadrilateral, then the angles of the quadrilateral in the same order are:
  • 70^{\circ} , 120^{\circ} , 110^{\circ}, 60^{\circ}
  • 120^{\circ} , 110^{\circ} , 70^{\circ}, 60^{\circ}
  • 110^{\circ} , 700^{\circ} , 60^{\circ}, 120^{\circ}
  • 60^{\circ} , 120^{\circ} , 70^{\circ}, 110^{\circ}
In the figure, \angle BAD = 70^{\circ}, \angle ABD = 56^{\circ} and \angle ADC = 72^{\circ}.
 Calculate (i) \angle BDC (ii) \angle BCD (iii) \angle CBD.

243373.jpg
  • (i) \angle BDC = 18^{\circ}

    (ii) \angle BCD = 110^{\circ}

    (iii) \angle CBD = 52^{\circ}
  • (i) \angle BDC = 18^{\circ}

    (ii) \angle BCD = 110^{\circ} 

    (iii) \angle CBD = 54^{\circ}
  • (i) \angle BDC = 18^{\circ}

    (ii) \angle BCD = 120^{\circ} 

    (iii) \angle CBD = 52^{\circ}
  • (i) \angle BDC = 10^{\circ}

    (ii) \angle BCD = 110^{\circ} 

    (iii) \angle CBD = 52^{\circ}
In the given figure, \triangle XYZ is inscribed in a circle with centre O. If the length of chord YZ is equal to the radius of the circle OY, then \angle YXZ is equal to 
243002_7291f0d28224411ca612abc2dd62f5c2.png
  • 60^o
  • 30^o
  • 80^o
  • 100^o
In the given figure, ABCD is a cyclic quadrilateral in which \angle CAD = 25^{o}, \angle ABC = 50^{o} and \angle ACB = 35^{o}.
Then: (i) \angle CBD (ii) \angle DAB (iii) \angle ADB are respectively?

243790_30d24b95fda34892907143784c4b6c4c.png
  • (i) \angle CBD = 35^{o}

    (ii) \angle DAB = 80^{o}

    (iii) \angle ADB = 85^{o}
  • (i) \angle CBD = 25^{o}

    (ii) \angle DAB = 35^{o}

    (iii) \angle ADB = 85^{o}
  • (i) \angle CBD = 25^{o}

    (ii) \angle DAB = 70^{o}

    (iii) \angle ADB = 35^{o}
  • (i) \angle CBD = 85^{o}

    (ii) \angle DAB = 70^{o}

    (iii) \angle ADB = 95^{o}
Two circle intersect at A and B. Quadrilaterals PCBA and ABDE are inscribed in these circles such that PAE and CBD are line segments. Also, \angleP = 95^o and \angleC = 40^o. The value of Z is:
243079_7ad7d4bf44e34ddbaf7fda019f04a94f.png
  • 65^o
  • 105^o
  • 95^o
  • 85^o
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers