Find all values of parameter $$a$$ for which the quadratic equation $$ \left( a+1 \right) { x }^{ 2 }+2\left( a+1 \right) x+a-2=0 $$ has two distinct roots.
0%
$$a \in (-1,\infty)$$
0%
$$a \in (-\infty,-1)$$
0%
$$a \in (-1,1)$$
0%
$$a \in (-\infty,\infty)$$
Q.2.
Find the discriminant for the given quadratic equation:
$$x^2\,+\,x\,+\,1\,=\,0$$
0%
$$-3$$
0%
$$-5$$
0%
$$-7$$
0%
$$-9$$
Q.3.
If $$D$$ is the discriminant of $$x^2\,+\,4x\,+\,1\,=\,0$$, then the value of $$D^2$$, is
0%
$$100$$
0%
$$12$$
100%
$$144$$
0%
$$10$$
Q.4.
Find $$m$$, if the quadratic equation $$(m\, -\, 1)\, x^{2}\, -\, 2\, (m\, -\, 1)\, x\, +\, 1\, =\, 0$$ has real equal roots.
0%
$$1$$
0%
$$2$$
0%
$$3$$
0%
$$4$$
Q.5.
Find c, if the quadratic equation $$x^{2}\, -\, 2\, (c\, +\, 1)\, x\, +\, c^{2}\, =\, 0 $$ has real and equal roots.
0%
$$c=\cfrac{1}{2}$$
0%
$$c=-\cfrac{1}{2}$$
0%
$$c=2$$
0%
$$c=-2$$
Q.6.
Find the value of discriminant for the following equation.
Which constant should be added and subtracted to solve the quadratic equation $$4{ x }^{ 2 }-\sqrt { 3 } x-5=0$$ by the method of completing the square?
0%
$$\displaystyle\frac{9}{10}$$
0%
$$\displaystyle\frac{3}{16}$$
0%
$$\displaystyle\frac{3}{4}$$
0%
$$\displaystyle\frac{\sqrt{3}}{4}$$
Q.9.
If $${b}^{2} -4ac\ge 0$$ then the roots of quadratic equation $$a{x}^{2} + bx + c =0$$ is-
If $$5m^{2}\, +\, m\, =\, 3$$, then $$m\, =\, \displaystyle \frac{-1\, \pm\, \sqrt{61}}{10}$$.
0%
True
0%
False
Q.11.
The value of $$p$$ for which the equation $$x^2+4=(P+2)x $$ has equal roots?
0%
$$2,-6$$
0%
$$-2, 6$$
0%
$$-2,-6$$
0%
$$2,6$$
Q.12.
Solve the following quadratic equation by completing square method.
$$3p^{2}\, +\, 4\, =\, -7p$$.
0%
$$-1$$
0%
$$\displaystyle -\dfrac{4}{3}$$
0%
$$2$$
0%
$$3$$
Q.13.
Solve the following quadratic equation by completing square.
$$2y^{2}\, +\, 5y\, +\, 1\, =\, 0$$, then $$y\, =\, \displaystyle \frac{-5\, \pm\, \sqrt{23}}{2}$$. State true or false.
0%
True
0%
False
Q.14.
Consider the quadratic equations $$\displaystyle ax^{2}+2bx+c=0$$ and $$\displaystyle \left ( a+c \right )\left ( ax^{2}+2bx+c \right )-2\left ( ac-b^{2} \right )\left ( x^{2}+1 \right )=0$$ If the roots of one are real (complex) then the roots of the other are complex (real.)
0%
True
0%
False
Q.15.
The ratio of the roots of the equation $$a{ x }^{ 2 }+bx+c=0$$ is same as the ratio of the roots of the equation $$p{ x }^{ 2 }+qx+r=0$$. If $${ D }_{ 1 }$$ and $${ D }_{ 2 }$$ are the discriminants of $$a{ x }^{ 2 }+bx+c=0$$ and $$p{ x }^{ 2 }+qx+r=0$$ respectively, then $${ D }_{ 1 }:{ D }_{ 2 }$$ is equal to
0%
$$\displaystyle \frac { { a }^{ 2 } }{ { p }^{ 2 } } $$
Determine the value of $$k$$ for which the quadratic equation $$4x^2 - 3kx + 1 = 0$$ has equal roots.
0%
$$\displaystyle \pm \frac{2}{3} $$
0%
$$\displaystyle \pm \frac{4}{3} $$
0%
$$\displaystyle \pm 4$$
0%
$$\displaystyle \pm 6$$
Q.24.
Find the roots of the following quadratic equation by using the quadratic formula $$x^2 - 16x + 64 = 0$$
0%
$$-8,-8$$
0%
$$8,8$$
0%
$$16,16$$
0%
$$-16,-16$$
Q.25.
Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is a real number.
0%
$$x=\displaystyle- \sqrt{\frac{2}{3}}$$
0%
$$x=\displaystyle \pm \sqrt{\frac{2}{3}}$$
0%
Cannot be determined
0%
None of these
Q.26.
Determine k such that the quadratic equation $$x^2 + 7(3 + 2k)+(1 + 3k)x = 0$$ has equal roots
0%
$$2, 7$$
0%
$$7, 5$$
0%
$$2, $$ $$\displaystyle - \frac{10}{9}$$
0%
None of these
Q.27.
Find the roots of the following quadratic equations by using the quadratic formula $$\displaystyle \frac{x}{x - 1} + \frac{x - 1}{x} = 4, x \neq 0, 1$$
0%
$$\displaystyle \frac{2 \pm \sqrt 3}{4}$$
0%
$$\displaystyle \frac{-1 \pm \sqrt 3}{2}$$
0%
$$\displaystyle \frac{1 \pm \sqrt 3}{1}$$
0%
$$\displaystyle \frac{-2 \pm \sqrt 3}{4}$$
Q.28.
Find the roots of the following quadratic equations by using the quadratic formula $$(x^2 - 2x)^2 - 4(x^2 - 2x) + 3= 0$$
0%
$$-1, 3, 1\pm \sqrt{2}$$
0%
$$1, 3, -1\pm \sqrt{2}$$
0%
$$1, 3, 1\pm \sqrt{2}$$
0%
None of these
Q.29.
Find the roots of the following quadratic equation by using the quadratic formula $$\displaystyle x + \frac{1}{x} = 3, x \neq 0$$
0%
$$\displaystyle \frac{3 \pm \sqrt {13}}{2}$$
0%
$$\displaystyle \frac{3 \pm \sqrt 5}{2}$$
0%
$$\displaystyle \frac{-3 + \sqrt 5}{2}$$
0%
$$\displaystyle \frac{-3 \pm \sqrt {13}}{2}$$
Q.30.
Find the roots of the following quadratic equations by using the quadratic formula $$\displaystyle \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} = 6\frac{6}{7}, x \neq - 3, 3$$
0%
$$4,\displaystyle \frac{9}{4}$$
0%
$$-4,\displaystyle \frac{4}{9}$$
0%
$$-4,-\displaystyle \frac{4}{9}$$
0%
$$-4,\displaystyle \frac{9}{4}$$
Support mcqexams.com by disabling your adblocker.
Please disable the adBlock and continue. Thank you.