Q.1.
Find all values of parameter $$a$$ for which the quadratic equation $$  \left( a+1 \right) { x }^{ 2 }+2\left( a+1 \right) x+a-2=0 $$ has two distinct roots.

Q.2.
Find the discriminant for the given quadratic equation:
$$x^2\,+\,x\,+\,1\,=\,0$$
Q.3.
If $$D$$ is the discriminant of $$x^2\,+\,4x\,+\,1\,=\,0$$, then the value of $$D^2$$, is
Q.4.
Find $$m$$, if the quadratic equation $$(m\, -\, 1)\, x^{2}\, -\, 2\, (m\, -\, 1)\, x\, +\, 1\, =\, 0$$ has real equal roots.
Q.5.
Find c, if the quadratic equation $$x^{2}\, -\, 2\, (c\, +\, 1)\, x\, +\,  c^{2}\, =\, 0 $$ has real and equal roots. 
Q.6.
Find the value of discriminant for the following equation.
$$4x^{2}\, -\, kx\, +\, 2\, =\, 0$$
Q.7.
Solve the equation using formula.
$$2x^{2}\, +\, \displaystyle \frac{x\, -\, 1}{5}\, =\, 0$$
Q.8.
Which constant should be added and subtracted to solve the quadratic equation $$4{ x }^{ 2 }-\sqrt { 3 } x-5=0$$ by the method of completing the square?
Q.9.
If $${b}^{2} -4ac\ge 0$$ then the roots of quadratic equation $$a{x}^{2} + bx + c =0$$ is-
Q.10.
State true or false:
If $$5m^{2}\, +\, m\, =\, 3$$, then $$m\, =\, \displaystyle \frac{-1\, \pm\, \sqrt{61}}{10}$$. 
Q.11.
The value of $$p$$ for which the equation $$x^2+4=(P+2)x $$ has equal roots?
Q.12.
Solve the following quadratic equation by completing square method.
$$3p^{2}\, +\, 4\, =\, -7p$$.
Q.13.
Solve the following quadratic equation by completing square.
$$2y^{2}\, +\, 5y\, +\, 1\, =\, 0$$, then $$y\, =\, \displaystyle \frac{-5\, \pm\, \sqrt{23}}{2}$$. State true or false.
Q.14.
Consider the quadratic equations $$\displaystyle ax^{2}+2bx+c=0$$ and $$\displaystyle \left ( a+c \right )\left ( ax^{2}+2bx+c \right )-2\left ( ac-b^{2} \right )\left ( x^{2}+1 \right )=0$$ If the roots of one are real (complex) then the roots of the other are complex (real.)
Q.15.
The ratio of the roots of the equation $$a{ x }^{ 2 }+bx+c=0$$ is same as the ratio of the roots of the equation $$p{ x }^{ 2 }+qx+r=0$$. If $${ D }_{ 1 }$$ and $${ D }_{ 2 }$$ are the discriminants of $$a{ x }^{ 2 }+bx+c=0$$ and $$p{ x }^{ 2 }+qx+r=0$$ respectively, then $${ D }_{ 1 }:{ D }_{ 2 }$$ is equal to
Q.16.
The equations to a pair of opposite sides of a parallelogram are $$\displaystyle x^{2}-5x+6=0 \ and \ y^{2}-6y+5=0$$  the equation of a diagonal can be
Q.17.
Find the roots of each of the following quadratic equations by the method of completing the squares
$$2x^2 - 5x + 3 = 0$$
Q.18.
Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is an irrational number.
Q.19.
Find $$x$$ by solving the given equation:
$$\displaystyle \frac{x + 3}{x + 2} = \frac{3x - 7}{2x - 3}$$
Q.20.
Solve for $$y$$: $$ \sqrt 7 y^2 - 6y - 13 \sqrt 7 = 0$$
Q.21.
Find the roots of each of the following quadratic equations by the method of completing the sqaures:
$$x^2 - 6x + 4 = 0$$
Q.22.
Find the roots of the following quadratic equation by using the quadratic formula
$$2x^2 - 2\sqrt 2x + 1 = 0$$
Q.23.
Determine the value of $$k$$ for which the quadratic equation $$4x^2 - 3kx + 1 = 0$$ has equal roots.
Q.24.
Find the roots of the following quadratic equation by using the quadratic formula 
$$x^2 - 16x + 64 = 0$$
Q.25.
Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is a real number.
Q.26.
Determine k such that the quadratic equation $$x^2 + 7(3 + 2k)+(1 + 3k)x = 0$$ has equal roots
Q.27.
Find the roots of the following quadratic equations by using the quadratic formula
$$\displaystyle \frac{x}{x - 1} + \frac{x - 1}{x} = 4, x \neq 0, 1$$
Q.28.
Find the roots of the following quadratic equations by using the quadratic formula
$$(x^2 - 2x)^2 - 4(x^2 - 2x) + 3= 0$$
Q.29.
Find the roots of the following quadratic equation by using the quadratic formula
$$\displaystyle x + \frac{1}{x} = 3, x \neq 0$$
Q.30.
Find the roots of the following quadratic equations by using the quadratic formula
$$\displaystyle \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} = 6\frac{6}{7}, x \neq - 3, 3$$