CBSE Questions for Class 9 Maths Surface Areas And Volumes Quiz 1 - MCQExams.com

The length of diagonal of a cube is $$15\sqrt { 2 } $$cm, then the length of its side is:
  • $$30\sqrt { 2 } $$ cm
  • 15 cm
  • $$5\sqrt { 6 } $$ cm
  • 30 cm
State whether the given statement is True or False. 
One cubic meter is equal to one litre.
  • True
  • False
The volume of a solid is the measurement of the portion of the space occupied by it.
State True or False.
  • True
  • False
  • Data Insufficient
  • None of the above
Find the volume and surface area of a sphere of radius $$4.2$$ cm. $$\displaystyle \left [ \pi =\frac{22}{7} \right ]$$
  • $$380.46 \,\text{cm}^3,\:221.76 \,\text{cm}^2$$
  • $$320.46 \,\text{cm}^3,\:221.76 \,\text{cm}^2$$
  • $$310.46 \,\text{cm}^3,\:221.76 \,\text{cm}^2$$
  • $$370.46 \,\text{cm}^3,\:221.76 \,\text{cm}^2$$
Find the volume of a sphere whose radius is $$7\ cm$$
  • $$1437\cfrac{1}{3}{cm}^{3}$$
  • $$1437\cfrac{1}{4}{cm}^{3}$$
  • $$1437\cfrac{2}{3}{cm}^{3}$$
  • $$1437\cfrac{1}{2}{cm}^{3}$$
The surface area of a cube of side is $$27\ \text{cm}$$ is:
  • $$2916{\ \mathrm{cm}}^{2}$$
  • $$729{\ \mathrm{cm}}^{2}$$
  • $$4374{\ \mathrm{cm}}^{2}$$
  • $$19683{\ \mathrm{cm}}^{2}$$
The volume of a sphere of diameter $$d$$ is:
  • $$\dfrac {\pi d^3}{3}$$
  • $$\dfrac {\pi d^3}{6}$$
  • $$\dfrac {2\pi d^3}{3}$$
  • $$\dfrac {\pi d^3}{4}$$
Curved surface area of hemisphere of diameter $$2 r$$ is :
  • $$2\pi r^{2}$$
  • $$3\pi r^{2}$$
  • $$4\pi r^{2}$$
  • $$8\pi r^{2}$$
The ratio of the volumes of two spheres is $$8 : 27$$. The ratio of their radii is
  • $$3 : 2$$
  • $$2 : 3$$
  • $$4 : 3$$
  • $$2 : 9$$
Volume of a cuboid whose $$l=3.5$$ m, $$b =2.5$$ m and $$h =1.5$$ m is
  • $$13.12$$ cu m
  • $$13.215$$ cu m
  • $$13.125$$ cu m
  • $$13.521$$ cu m
The radius of the cylinder whose lateral surface area is $$704{cm}^{2}$$ and height $$8$$ cm is:
  • $$6$$ cm
  • $$4$$ cm
  • $$8$$ cm
  • $$14$$ cm
The radius of a sphere of lead is $$8$$cm. The number of spheres of radius $$5$$mm made by melting it will be
  • $$6000$$ approx
  • Greater than $$4000$$ and less than $$5000$$
  • Greater than $$3000$$ and less than $$4000$$
  • Less than $$3000$$
If radius of a sphere is doubled, how many times its volume will be affected?
  • 2 times
  • 4 times
  • 6 times
  • 8 times
If the curved surface area of a cylinder is $$1760$$ sq.cm and its base radius is $$14$$ cm, then its height is:
  • $$10$$ cm
  • $$15$$ cm
  • $$20$$ cm
  • $$40$$ cm
A reservoir is 3 m long, 2 m wide and 1 deep. Its capacity in litres is
  • 8000 litres
  • 10000 litres
  • 6500 litres
  • 6000 litres
The number of surface areas in right circular cylinder is
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
Find the volume of a sphere of radius $$2.1\;cm$$.
  • $$34.8\;cm^3$$
  • $$35.8\;cm^3$$
  • $$38.8\;cm^3$$
  • $$36.8\;cm^3$$
The diameter of a sphere is 21 cm. Calculate its volume
  • 4851 $$\displaystyle cm^{3}$$
  • 4000 $$\displaystyle cm^{3}$$
  • 2000 $$\displaystyle cm^{3}$$
  • 3850 $$\displaystyle cm^{3}$$
The radius of a sphere is 3 cm. Its volume is:
  • 113.14 $$\displaystyle cm^{3}$$
  • 120 $$\displaystyle cm^{3}$$
  • 108 $$\displaystyle cm^{3}$$
  • 112.12 $$\displaystyle cm^{3}$$
If the surface area of a sphere is $$ \displaystyle   324\pi cm^{2}   $$ then its volume is
  • $$ \displaystyle 950 \pi $$ $$\displaystyle cm^{3}$$
  • $$ \displaystyle 972 \pi $$ $$\displaystyle cm^{3}$$
  • $$ \displaystyle 975 \pi $$ $$\displaystyle cm^{3}$$
  • $$ \displaystyle 980\pi $$ $$\displaystyle cm^{3}$$
If the volume in $$ \displaystyle  m ^{2} $$ and the surface area in $$ \displaystyle  m ^{2} $$ of a sphere are numerically equal then the radius of the sphere in m is
  • 4
  • 2
  • 3.5
  • 3
$$l \times b \times h$$ is formula of---
  • Area of cube
  • Area of cuboid
  • Volume of a cuboid
  • None of these
The volume of a sphere of diameter 2p cm is given by
  • $$ \displaystyle \pi p^{2}cm ^{3} $$
  • $$ \displaystyle \pi p^{3}cm ^{3} $$
  • $$ \displaystyle 4 \pi p^{2}cm ^{3} $$
  • $$ \displaystyle \frac{4}{3}\pi p^{3}cm ^{3} $$
If the radius of a sphere is doubled what is the ratio of the volume of the first sphere to that of the second?
  • $$2:8$$
  • $$1:2$$
  • $$1:3$$
  • $$1:8$$
2(lb + bh + hl) is formula of---
  • Area of a cuboid
  • Area of a cube
  • Volume of a cuboid
  • None of these
If the radius of a sphere is doubled then the volume of a sphere becomes
  • doubled
  • six times
  • four times
  • eight times
Find the volume of the sphere whose diameter is 30 cm.
  • 1.41428 cm$$\displaystyle ^{3}$$
  • 1414.28 cm$$\displaystyle ^{3}$$
  • 141.428 cm$$\displaystyle ^{3}$$
  • 14142.8 cm$$\displaystyle ^{3}$$
The curved surface area of a hemisphere of diameter $$2 r$$ is:
  • $$\displaystyle 2\pi r^{2}$$
  • $$\displaystyle 3\pi r^{2}$$
  • $$\displaystyle 4\pi r^{2}$$
  • $$\displaystyle 8\pi r^{2}$$
The total surface area of a cube is ____ .
  • $$\displaystyle 3{ a }^{ 2 }$$
  • $$\displaystyle 6{ a }^{ 2 }$$
  • $$\displaystyle 4{ a }^{ 2 }$$
  • $$\displaystyle 5{ a }^{ 2 }$$
Lateral surface area of a cylinder is
  • $$2\pi r^2$$
  • $$2\pi rh^2$$
  • $$2\pi rh$$
  • None
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers