MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 9 Maths Surface Areas And Volumes Quiz 7 - MCQExams.com
CBSE
Class 9 Maths
Surface Areas And Volumes
Quiz 7
The side of the base of a dice is $$5.5$$ mm. Find the surface area of a dice whose edges are squares.
Report Question
0%
$$\displaystyle 181.5{ mm }^{ 2 }$$
0%
$$\displaystyle 90.21{ mm }^{ 2 }$$
0%
$$\displaystyle 180.2{ mm }^{ 2 }$$
0%
$$\displaystyle 120.4{ mm }^{ 2 }$$
Explanation
Given, side of base $$=5.5$$ mm
Total surface area of a cube $$=$$ $$\displaystyle 6\times $$ side$$^{ 2 }$$
$$\displaystyle =6\times 5.5\times 5.5$$
$$\displaystyle =181.5{ mm }^{ 2 }$$
Find the surface area of a cube with side $$\displaystyle 12$$ m
Report Question
0%
$$\displaystyle 814{ m }^{ 2 }$$
0%
$$\displaystyle 864{ m }^{ 2 }$$
0%
$$\displaystyle 854{ m }^{ 2 }$$
0%
$$\displaystyle 841{ m }^{ 2 }$$
Explanation
Total surface area of a cube $$=$$ $$\displaystyle 6\times $$ side$$^{ 2 }$$
$$\displaystyle =6\times 12\times 12$$
$$\displaystyle =864{ m }^{ 2 }$$
A cubical water tank measures $$3$$ feet sides. Find its surface area.
Report Question
0%
$$\displaystyle 9{ ft }^{ 2 }$$
0%
$$\displaystyle 50{ ft }^{ 2 }$$
0%
$$\displaystyle 52{ ft }^{ 2 }$$
0%
$$\displaystyle 54{ ft }^{ 2 }$$
Explanation
$$Surface\ area\ of\ a\ cube=6\times Side^2$$
$$side=3ft$$
$$Surface\ Area=6\times 3^2$$
$$Surface\ Area=6\times 9$$
$$Surface\ Area=54ft^2$$
The length of the side is $$3.9$$ ft. Find the surface area of a cube .
Report Question
0%
$$\displaystyle 41.82{ ft }^{ 2 }$$
0%
$$\displaystyle 94.16{ ft }^{ 2 }$$
0%
$$\displaystyle 91.26{ ft }^{ 2 }$$
0%
$$\displaystyle 40.41{ ft }^{ 2 }$$
Explanation
Given, length of side $$=.9$$ ft
Total surface area of a cube $$=$$ $$\displaystyle 6\times $$ side$$^{ 2 }$$
$$\displaystyle =6\times 3.9\times 3.9$$
$$\displaystyle =91.26{ ft }^{ 2 }$$
The curved surface of a cylinder is $$\displaystyle 1000{ \ mm }^{ 2 }$$ and the radius is $$20$$ mm. Find height of the cylinder. (Round off the answer to nearest whole number).
Report Question
0%
$$\displaystyle 8{\ mm }$$
0%
$$\displaystyle 9{\ mm }$$
0%
$$\displaystyle 7.9{\ mm }$$
0%
$$\displaystyle 7.96{\ mm }$$
Explanation
Curved surface area of cylinder is
$$A=2πrh$$
Here, the curved surface area is $$A=1000$$ mm$$^2$$ the radius is $$r=20$$ mm.
Thus,
$$A=2πrh\\ \Rightarrow 1000=2\times \frac { 22 }{ 7 } \times 20\times h\\ \Rightarrow 1000\times 7=2\times 22\times 20\times h\\ \Rightarrow 7000=880\times h\\ \Rightarrow h=\frac { 7000 }{ 880 } =7.96$$
Hence, height
of the cylinder is
$$7.96$$
m
m
.
The curved surface area of the cylinder is $$2\pi r h$$ where as surface area of the cylinder is
Report Question
0%
$$\pi r(r+h)$$
0%
$$\pi rl(r+h)$$
0%
$$2\pi r(r+h)$$
0%
$$2\pi r^2l(r+h)$$
Explanation
The curved surface area of the cylinder is $$2\pi r h$$ where as surface area of the cylinder is $$2\pi r(r+h)$$.
Surface area includes curved surface area and two circular bases of the cylinder.
The diameter of a cylinder is $$12$$ m and its height is $$10$$ m. Find the curved surface area of a cylinder.
Report Question
0%
$$\displaystyle 240\pi { cm }^{ 2 }$$
0%
$$\displaystyle 120\pi { m }^{ 2 }$$
0%
$$\displaystyle 220\pi { m }^{ 2 }$$
0%
$$\displaystyle 230\pi { mm }^{ 2 }$$
Explanation
Curved surface area of cylinder is
$$A=2πrh$$
Here, the diameter is $$12$$ m and therefore, the radius is half of diameter that is $$r=6$$ m and height is $$10$$ m.
Thus,
$$A=2πrh=2\times π\times 6\times 10=120π$$
m
$$^2$$
Hence, the c
urved surface area
of the cylinder is
$$120π$$
m
$$^2$$
.
Choose the correct formula for surface area of a cylinder.
Report Question
0%
$$\displaystyle 2\pi { r }^{ 2 }+2\pi rh$$
0%
$$\displaystyle \pi { r }^{ 2 }+\pi rh$$
0%
$$\displaystyle 2\pi r+2\pi rh$$
0%
$$\displaystyle 2\pi { r }^{ 2 }+\pi rh$$
Explanation
A cylinder comprises two circles and one rectangle as given in the figure
The surface area of a circle is $$\pi r^2$$ where $$r$$ is the radius and the surface area of a rectangle is $$2\pi rh$$.
$$\implies$$ Surface area of cylinder $$=2\times$$ area of the circular base $$+$$ area of the rectangle
$$\Rightarrow $$ Surface area of cylinder $$=2\pi r^2+2\pi rh$$
Find the area of the curved surface of a cylindrical box with radius 12 inches and height 20 inches.
Report Question
0%
$$\displaystyle 1505.1{ in }^{ 2 }$$
0%
$$\displaystyle 1506.5{ in }^{ 2 }$$
0%
$$\displaystyle 1507.5{ in }^{ 2 }$$
0%
$$\displaystyle 1507.2{ in }^{ 2 }$$
Explanation
Curved surface area of cylinder is
$$A=2πrh$$
Here, the radius is $$12$$ in and height is $$20$$ in.
Thus,
$$A=2πrh=2\times 3.14\times 12\times 20=1507.2$$
in
$$^2$$
Hence, the c
urved surface area
of the cylinder is
$$1507.2$$
in
$$^2$$
.
Find the surface area of the cylinder shown above:
Report Question
0%
$$\displaystyle 0.46\pi $$
0%
$$\displaystyle 0.46\pi { m }^{ 3 }$$
0%
$$\displaystyle 0.46\pi { m }^{ 2 }$$
0%
$$\displaystyle 0.46\pi cm$$
Explanation
Given: Radius of cylinder $$r=0.1m$$ and Height $$h=2.2m$$.
Surface area of a cylinder = $$\displaystyle 2\pi r\left( r+h \right) $$
$$\displaystyle =2\times \pi \times 0.1\left( 0.1+2.2 \right) $$
$$\displaystyle =2\times \pi \times 0.1\left( 2.3 \right) $$
$$\displaystyle =0.46\pi { m }^{ 2 }$$
So, option C is correct.
Find the surface area of a cylinder:
$$r=9\ in, h=18\ in$$
Report Question
0%
$$\displaystyle 1526.04{\ in }^{ 2 }$$
0%
$$\displaystyle 1525.03{\ in }^{ 2 }$$
0%
$$\displaystyle 1526.04\ in$$
0%
$$\displaystyle 1526.04{\ in }^{ 3 }$$
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here, radius is $$r=9$$ in and the height is $$h=18$$ in.
Thus,
$$A=2πr(r+h)=2\times 3.14\times 9(9+18)=56.52\times 27=1526.04$$
Hence, the surface area
of the cylinder is
$$1526.04$$
in
$$^2$$
.
The volume of a cylinder is $$616$$ cubic feet and height $$4$$ feet. Find its curved surface area. (Use $$\displaystyle \pi ={ 22 }/{ 7 }$$)
Report Question
0%
$$\displaystyle 88{ ft }^{ 2 }$$
0%
$$\displaystyle 198{ ft }^{ 2 }$$
0%
$$\displaystyle 79{ ft }^{ 2 }$$
0%
$$\displaystyle 176{ ft }^{ 2 }$$
Explanation
Volume of a cylinder $$=$$ $$\displaystyle \pi { r }^{ 2 }h$$
$$\Rightarrow \displaystyle 616=\frac { 22 }{ 7 } \times { r }^{ 2 }\times 4$$
$$\Rightarrow \displaystyle \frac { 616\times 7 }{ 22\times 4 } ={ r }^{ 2 }$$
$$\Rightarrow \displaystyle { r }^{ 2 }=49$$
$$\Rightarrow \displaystyle r=\sqrt { 49 } =7ft$$
Curved surface area $$=$$ $$\displaystyle 2\pi rh$$
$$\displaystyle =2\times \frac { 22 }{ 7 } \times 7\times 4$$
$$\displaystyle =176$$ square feet
The inner radius of a cylindrical wooden furniture is $$8$$ m and its outer radius is $$ 12$$ m. The height of the furniture is $$ 35$$ m. Find its lateral surface area. (Use $$\displaystyle \pi ={ 22 }/{ 7 }$$).
Report Question
0%
$$\displaystyle 880{ \ m }^{ 3 }$$
0%
$$\displaystyle 880{\ m }^{ 2 }$$
0%
$$\displaystyle 88{ \ m }^{ 2 }$$
0%
$$\displaystyle 880{\ mm }^{ 2 }$$
Explanation
Given: Inner radius of the cylindrical furniture (r) $$=8$$ m
Outer radius of the cylindrical furniture (R)$$=12$$ m
Height of the furniture (h) $$=35 $$m
$$\therefore$$ Lateral Surface area $$=2\pi(R-r)h$$
$$=2\times \dfrac{22}{7}\times (12-8)\times 35$$
$$=2\times 22\times 4 \times 5$$
$$=880 m^2$$
If the lateral surface of a cylinder is $$\displaystyle 500\ { cm }^{ 2 }$$ and ts height is $$10\ cm$$, then find radius of its base. (use $$\displaystyle \pi =3.14$$).
Report Question
0%
$$6.92\ cm$$
0%
$$7.96\ cm$$
0%
$$\displaystyle 6.54\ cm $$
0%
$$\displaystyle 8.22\ cm$$
Explanation
Here, the lateral surface area is $$A=500\ cm^2$$ and the height is $$h=10\ cm$$
Let, the radius be $$r$$
Lateral surface area of cylinder is $$A=2πrh$$
Thus,
$$A=2πrh\\ \Rightarrow 500=2\times 3.14\times r\times 10\\ \Rightarrow 500=62.8r\\ \Rightarrow r=\dfrac { 500 }{ 62.8 } =7.96$$
Hence, radius
of the cylinder is
$$7.96\ cm$$ .
The circumference of a circle is $$200$$ feet and height is $$12$$ feet. Find its curved surface area of a cylinder.
Report Question
0%
$$\displaystyle 2400{ ft }^{ 2 }$$
0%
$$\displaystyle 2100{ ft }^{ 2 }$$
0%
$$\displaystyle 2300{ ft }^{ 2 }$$
0%
$$\displaystyle 2010{ ft }^{ 2 }$$
Explanation
Circumference of cylinder is
$$C=2πr$$
It is given that the circumference is $$200$$ feet, therefore,
$$C=2πr\\ \Rightarrow 200=2πr\\ \Rightarrow r=\dfrac { 200 }{ 2π } =\dfrac { 100 }{ π }$$
Now, curved surface area of cylinder is
$$A=2πrh$$
Here, the radius is
$$\dfrac { 100 }{ π }$$
ft and height is $$12$$ ft.
Thus,
$$A=2πrh=2π\times \dfrac { 100 }{ π } \times 12=2\times 100\times 12=2400$$ ft$$^2$$
Hence, the c
urved surface area
of the cylinder is
$$2400$$
ft
$$^2$$
.
David built a recycling cylindrical bin that is 12 feet long and its base is 56 feet radius. Find the surface area of the bin.
Report Question
0%
$$\displaystyle 23936{\ ft }^{ 3 }$$
0%
$$\displaystyle 23936{\ ft }^{ 2 }$$
0%
$$\displaystyle 23950{ \ ft }^{ 2 }$$
0%
$$\displaystyle 23936\ ft$$
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here the cylindrical bin has radius $$r=56$$ ft and height $$h=12$$ ft.
Thus,
$$A=2πr(r+h)=2\times 3.14\times 56(56+12)=351.68\times 68=23936.24$$
Hence, the surface area
of the cylindrical bin is approximately equal to
$$23936$$
ft
$$^2$$
.
Find the curved surface area of the cylinder given above:
Report Question
0%
$$\displaystyle 1507.2{ m }^{ 2 }$$
0%
$$\displaystyle 1527.6{ m }^{ 2 }$$
0%
$$\displaystyle 1517.8{ m }^{ 2 }$$
0%
$$\displaystyle 1588.1{ m }^{ 3 }$$
Explanation
Given,
Height $$h=40\ m$$
Diameter = $$\displaystyle 12m$$
Radius $$r= \dfrac {Diameter}{2} = \dfrac {12}{2}\ m = 6$$ m
Curved surface area $$=\displaystyle 2\pi rh$$
$$\displaystyle =2\times 3.14\times 6\times 40\ m^2$$
$$\displaystyle = 1507.2{ m }^{ 2 }$$
So, option A is correct.
The radius of the base of a cylinder is 20 cm and the height is 12 cm. Find the surface area of the cylinder. (Assume $$\displaystyle \pi =3.14$$).
Report Question
0%
$$\displaystyle 4019.2{ cm }^{ 3 }$$
0%
$$\displaystyle 4019.2cm$$
0%
$$\displaystyle 4019.2{ cm }^{ 2 }$$
0%
$$\displaystyle 4018.6{ cm }^{ 2 }$$
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here, radius is $$r=20$$ cm and the height is $$h=12$$ cm.
Thus,
$$A=2πr(r+h)=2\times 3.14\times 20(20+12)=125.6\times 32=4019.2$$
Hence, the surface area
of the cylinder is
$$4019.2$$
c
m$$^2$$
.
Find the height of a cylinder that has a diameter of $$10$$ feet and a surface area of $$\displaystyle 220{\ ft }^{ 2 }$$. Round your answer to the nearest whole number.
(use $$\displaystyle \pi ={ 22 }/{ 7 }$$).
Report Question
0%
$$0.1$$ ft
0%
$$3$$ ft
0%
$$2$$ ft
0%
$$1$$ ft
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here the cylinder has surface area $$A=220$$ ft$$^2$$ and diameter $$10$$ ft and therefore, the radius is half of the diameter that is$$r=5$$ ft.
Thus,
$$A=2πr(r+h)\\ \Rightarrow 220=2\times \frac { 22 }{ 7 } \times 5(5+h)\\ \Rightarrow 220=\frac { 44 }{ 7 } (25+5h)\\ \Rightarrow 220\times 7=1100+220h\\ \Rightarrow 1540-1100=220h\\ \Rightarrow 220h=440\\ \Rightarrow h=\frac { 440 }{ 220 } =2$$
Hence, the height
of the cylinder is
$$2$$ ft
.
A cylindrical drum has its height 20 inches and curved surface area as $$\displaystyle 200{ in }^{ 2 }$$. Find surface area of cylindrical drum.($$\displaystyle \pi ={ 22 }/{ 7 }$$)
Report Question
0%
$$\displaystyle 203.5{ in }^{ 2 }$$
0%
$$\displaystyle 207.3{ in }^{ 2 }$$
0%
$$\displaystyle 215.7{ in }^{ 2 }$$
0%
$$\displaystyle 218.13$$
Judah wants to make a cylindrical drum that will fit a bass with a height $$15 $$in. and a diameter of $$48$$ in. What is the surface area of the drum?
Take $$\pi = 3.14$$
Report Question
0%
$$\displaystyle 5810.10in$$
0%
$$\displaystyle 5810.10{ in }^{ 2 }$$
0%
$$\displaystyle 5878.08{ in }^{ 2 }$$
0%
$$\displaystyle 5878{ in }^{ 2 }$$
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here, diameter is $$48$$ in and therefore, the radius is half of diameter that is $$r=24$$ in and the height is $$h=15$$ in.
Thus,
$$A=2πr(r+h)=2\times 3.14\times 24(24+15)=150.72\times 39=5878.08$$
Hence, the surface area
of the cylindrical drum is
$$5878.08$$
in
$$^2$$
.
Edward bought a container of ceralac in the shape of cylinder. If the container has a radius $$10 m$$ and a surface area is $$\displaystyle 340\pi $$. What is its height?
Report Question
0%
$$5 m$$
0%
$$6m$$
0%
$$7m$$
0%
$$8m$$
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here the cylindrical container has surface area
$$A=340π$$
m$$^2$$ and radius $$r=10$$ m.
Thus,
$$A=2πr(r+h)\\ \Rightarrow 340π=2π\times 10(10+h)\\ \Rightarrow 340π=20π(10+h)\\ \Rightarrow 340π=200π+20πh\\ \Rightarrow 20πh=340π-200π\\ \Rightarrow 20πh=140π\\ \Rightarrow h=\dfrac { 140π }{ 20π } =7$$
Hence, the height
of the cylindrical container is $$7m$$.
Find the total surface area of the cylinder. (Use $$\displaystyle \pi =3.14$$).
Report Question
0%
$$\displaystyle 678.99{ ft }^{ 2 }$$
0%
$$\displaystyle 3881.05{ ft }^{ 2 }$$
0%
$$\displaystyle 3881.04ft$$
0%
$$\displaystyle 678.24{ ft }^{ 2 }$$
Explanation
Given: $$r=6ft$$ and $$h=12ft$$
The total surface area of a cylinder = $$\displaystyle 2\pi r\left( r+h \right) $$
$$\displaystyle =2\times 3.14\times 6\left( 6+12 \right) $$
$$\displaystyle =2\times 3.14\times 6\left( 18 \right) $$
$$=\displaystyle 678.24{ ft }^{ 2 }$$
So, option D is correct.
The surface area of a cylindrical box is $$\displaystyle 132\ { mm }^{ 2 }$$ and its height is $$4 \ mm.$$ Find its radius.
Report Question
0%
$$\displaystyle 2 $$ $${ mm }$$
0%
$$\displaystyle 3 $$ $${ mm }$$
0%
$$\displaystyle 4 $$ $${ mm }$$
0%
$$\displaystyle 5 $$ $${ mm }$$
Explanation
Given: Cylindrical box has surface area $$A=132$$ $$mm^2$$ and height $$h=4\ mm$$
We know surface area of cylinder is
$$A=2πr(r+h)$$
Thus,
$$ 132=2\times \dfrac { 22 }{ 7 } \times r(r+4)$$
$$ \Rightarrow 132=\dfrac { 44 }{ 7 } r(r+4)$$
$$ \Rightarrow 132\times 7=44r(r+4)$$
$$\Rightarrow 924=44r^{ 2 }+176r$$
$$\Rightarrow 44r^{ 2 }+176r-924=0$$
$$ \Rightarrow r^{ 2 }+4r-21=0$$
$$ \Rightarrow r^{ 2 }+7r-3r-21=0$$
$$ \Rightarrow r(r+7)-3(r+7)=0$$
$$ \Rightarrow r+7=0,\quad r-3=0$$
$$ \Rightarrow r=-7,\quad r=3$$
Hence, the radius
of the cylindrical box is
$$3$$ mm
.
A skating board rocks back and forth on a wooden cylinder. The cylinder has a radius of 6 inches and a surface area is $$\displaystyle 590{ in }^{ 2 }$$. Find the height of the cylinder. ($$\displaystyle \pi =3.14$$).
Report Question
0%
$$10$$ in
0%
$$9.65$$ in
0%
$$9$$ in
0%
$$9.5$$ in
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here the wooden cylinder has surface area $$A=590$$ in$$^2$$ and radius $$r=6$$ mm.
Thus,
$$A=2πr(r+h)\\ \Rightarrow 590=2\times \dfrac { 22 }{ 7 } \times 6(6+h)\\ \Rightarrow 590=\dfrac { 44 }{ 7 } (36+6h)\\ \Rightarrow 590\times 7=1584+264h\\ \Rightarrow 4130-1584=264h\\ \Rightarrow 264h=2546\\ \Rightarrow h=\dfrac { 2546 }{ 264 } =9.643$$
Hence, the height
of the wooden cylinder is
$$9.65$$ in
.
Find the volume of the hemisphere with radius $$6$$ cm.
Report Question
0%
$$352.16$$ $$cm^3$$
0%
$$452.16$$ $$cm^3$$
0%
$$252.16$$ $$cm^3$$
0%
$$152.16$$ $$cm^3$$
Explanation
Given, radius of hemisphere $$=6$$ cm
Volume of the hemisphere $$=$$ $$\dfrac{2}{3}\pi r^3$$
$$=$$ $$\dfrac{2}{3}\times 3.14 \times 6^3$$
$$= 452.16 $$ $$cm^3$$
A gas cylinder has a diameter of $$14 $$m and height is $$0.2$$m. Find its surface area. ($$\displaystyle \pi ={ 22 }/{ 7 }$$)
Report Question
0%
$$\displaystyle 316.512{ mm }^{ 2 }$$
0%
$$\displaystyle 316.512m$$
0%
$$\displaystyle 316.512{ m }^{ 3 }$$
0%
$$\displaystyle 316.512{ m }^{ 2 }$$
Explanation
Surface area of cylinder is
$$A=2πr(r+h)$$
Here the gas cylinder has diameter $$14$$ m and therefore, the radius is half of diameter that is $$r=7$$ m and height $$h=0.2$$ m.
Thus,
$$A=2πr(r+h)=2 \times \dfrac {22}{7}\times 7(7+0.2)=316.512$$
Hence, the surface area
of the gas cylinder is $$316.512m^2$$.
The curved surface area of a cylinder is $$\displaystyle 188.4\ { m }^{ 2 }$$. The height is $$12\ m$$. What is the radius? (use$$\displaystyle \pi =3.14$$).
Report Question
0%
$$\displaystyle 2\ { cm }$$
0%
$$\displaystyle 2.5\ cm$$
0%
$$\displaystyle 2\ m$$
0%
$$\displaystyle 2.5\ m$$
Explanation
Curved surface area of cylinder is
$$A=2πrh$$
Here, the curved surface area is $$A=188.4\ m^2$$ the height is $$h=12\ m$$.
Thus,
$$A=2πrh\\ \Rightarrow 188.4=2\times 3.14\times r\times 12\\ \Rightarrow 188.4=75.36r\\ \Rightarrow r=\dfrac { 188.4 }{ 75.36 } =2.5$$
Hence, radius
of the cylinder is
$$2.5\ m$$
Find the volume of a sphere whose diameter is $$7.2\ mm$$.
Report Question
0%
$$\displaystyle 195.33{ \ m }^{ 3 }$$
0%
$$\displaystyle 175.33{ \ mm }^{ 3 }$$
0%
$$\displaystyle 195.33{ \ mm }^{ 3 }$$
0%
$$\displaystyle 185.33{\ mm }^{ 3 }$$
Explanation
Formula:
Volume of sphere $$=\dfrac{4}{3} \pi r^3$$
$$r=radius$$
Given:
$$diameter(d)=7.2\ mm$$
$$radius(r)=\dfrac{d}{2}=\dfrac{7.2}{2}=3.6\ mm$$
$$\Rightarrow \dfrac{4}{3} \pi r^3=\dfrac{4}{3}\times 3.14\times (3.6)^3$$
$$=\dfrac{4}{3}\times 3.6\times 3.6\times 3.6\times 3.14$$
$$=\dfrac{4}{3}\times 46.656times 3.14$$
$$=\dfrac{585.999}{3}$$
$$=195.33\ mm^3$$
What is the volume of a sphere? (use $$\displaystyle \pi =3.14$$)
Report Question
0%
$$\displaystyle 6,878.82{\ in }^{ 3 }$$
0%
$$\displaystyle 6,578.82{ \ in }^{ 3 }$$
0%
$$\displaystyle 5,878.82{\ in }^{ 3 }$$
0%
$$\displaystyle 6,808.82{\ in }^{ 3 }$$
Explanation
Formula:
Volume of sphere$$=\dfrac{4}{3}\pi r^3$$
where,
$$r=radius$$
Given:
$$r=11.8$$
After substituting the values in the formula we
$$ \dfrac{4}{3}\pi r^3 =\dfrac{4}{3}\times 3.14\times 11.8^3$$
$$=\dfrac{4}{3}\times3.14\times11.8\times11.8\times11.8$$
$$=\dfrac{20636.481}{3}$$
$$=6878.82\ in^3$$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 9 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page