CBSE Questions for Class 9 Maths Triangles Quiz 1 - MCQExams.com

Two sides of a triangle are of lengths $$4$$ cm and $$1.5$$ cm. The length of the third side of the triangle cannot be
  • $$3.6$$ cm
  • $$4.1$$ cm
  • $$3.8$$ cm
  • $$5.8$$ cm
The construction of a triangle $$ABC$$, given that $$BC =$$ $$6$$ cm, $$B =$$ $$45 ^{\circ}$$ is not possible when difference of $$AB$$ and $$AC$$ is equal to:
  • $$6.9$$ cm
  • $$5.2$$ cm
  • $$5.0$$ cm
  • $$4.0$$ cm
In the above figure, if OA $$=$$ OB, OD $$=$$ OC then $$\Delta AOD \cong  \Delta BOC$$ by congruence rule :

84875_a19f92b5737c40a7b69b7eda2bfed6bb.png
  • $$SSS$$
  • $$ASA$$
  • $$SAS$$
  • $$RHS$$
In $$\Delta ABC\, \angle A=50^{\circ} $$and$$ \, \angle B=60^{\circ}  $$. By arranging the sides of the triangle in ascending order, we get :
  • $$AB < BC < CA$$
  • $$CA < AB < BC$$
  • $$BC < CA < AB$$
  • $$BC < AB < CA$$
In $$\Delta ABC, \angle A=100^{\circ}, \angle B=30^{\circ}$$ and $$\angle C= 50^{\circ}$$,then
  • $$AB>AC$$
  • $$AB=AC$$
  • $$AB<AC$$
  • None of these
In figure, if $$AB=AC$$ and $$AP=AQ$$, then by which congruence criterion $$\Delta PBC \cong \Delta QCB$$?

85216_57077f0aac474168a5790232927a8e2a.png
  • $$SSS$$
  • $$ASA$$
  • $$SAS$$
  • $$RHS$$
$$Q$$ is a point on side RS of $$\Delta PSR$$ such that $$PQ =PR$$ then which of the following is correct:
  • $$PS = PQ$$
  • $$PS > PQ$$
  • $$PS < PQ$$
  • Cannot be determined
If length of the largest side of a triangle is 12 cm then other two sides of triangle can be 
  • 4.8 cm, 8.2 cm
  • 3.2 cm, 7.8 cm
  • 6.4 cm, 2.8 cm
  • 7.6 cm, 3.4 cm
If $$AB = 1$$, then radius of the inscribed circle

is:





86900.PNG
  • $$ \frac{1}{3}$$
  • $$ \frac{1}{2}$$
  • $$ \frac{1}{\sqrt{3} + 1}$$
  • $$ \frac{1}{\sqrt{3} - 1}$$
$$\Delta ABC$$ is congruent of $$\Delta DEF$$, if
  • $$AB \neq DE$$, $$AC = 6 = DF$$, $$\angle A = \angle D$$
  • $$AB  = DE$$, $$AC = DF$$, $$\angle B =\angle E$$
  • $$AB = DE$$, $$AC \neq DF$$, $$\angle C =\angle F$$
  • $$AB = DE$$, $$AC = DF$$, $$\angle C \neq \angle F$$
If $$E$$ is a point on side $$QR$$ of $$\Delta PQR$$ such that $$PE$$ bisects $$\angle QPR$$, then :
  • $$QE = ER$$
  • $$QP > QE$$
  • $$QE > QP$$
  • $$ER > RP$$
In $$\Delta PQR, \angle P = 60^{\circ}$$ and $$\angle Q = 50^{\circ}$$. Which side of the triangle is the longest ?
  • PQ
  • QR
  • PR
  • None
T is a point on side QR of $$\Delta$$ PQR. "S" is a point such that $$RT = ST.$$ then

102815_d3f33727df4d43f8a8a4389c08f5abcb.png
  • $$PQ + QR > QS$$
  • $$PQ + PR > QS$$
  • $$QR + PR > QS$$
  • $$PQ + PR < QS$$
State true/false:
If in $$\bigtriangleup ABC and \bigtriangleup QRP, AB =QR,\angle B=\angle R\:and \: \angle C=\angle P.$$ 
Then, by A.S.A criteria, $$\triangle ABC$$ and $$\triangle QRP$$ are congruent.
  • True
  • False
State whether the given statement is true or false:
In $$\displaystyle \bigtriangleup ABC$$ and $$\bigtriangleup DEF, AB=DE,BC=EF$$ and $$\angle B=\angle E$$. The triangles are congruent by $$SSS$$ test.
  • True
  • False
If $$AB = 7$$ cm, $$BP = 4$$ cm, $$AP = 5.4$$ cm, then compare the segments.
  • $$AP > BP > AB$$
  • $$BP < AP < AB$$
  • $$AP > BP < AB$$
  • None of these
In triangle $$ ABC$$, $$\angle B=30^{o}$$ and $$\angle$$ C$$=70^{o}$$. The greatest side of the triangle is
  • $$AB$$
  • $$BC$$
  • $$AC$$
  • Data insufficient
In the figure given above, $$AP$$ $$\perp l$$ i.e., $$AP$$ is the shortest line segment that can be drawn from $$A$$ to the line $$l$$. If $$PR > PQ$$, which of the following is true.

101890.jpg
  • $$AQ>AR$$
  • $$AR>AQ$$
  • $$AQ=2AR$$
  • $$AQ=\sqrt{2}AR$$
In the figure, given below, $$ AB = AC $$.
Hence, $$ \angle BAC = \angle ACD  $$.

176533.JPG
  • True
  • False
In triangle $$ ABC $$, bisector of angle $$ BAC $$ meets opposite side $$ BC $$ at point $$ D $$. If $$ AB=AC $$, then $$BD=CD.$$
  • True
  • False
State true or false:
If  $$ED= EC$$, then $$AB\, +\, AD> BC$$.(Refer given fig.)

179002.jpg
  • True
  • False
In the figure $$\angle  ABC=135^{\circ},\angle ABX=90^{\circ} ,\angle XCD=55^{\circ}, \angle BCD=100^{\circ}$$,then determine whether $$\angle XBC$$ and $$\angle XCB$$ are congruent to each other.
182921.jpg
  • $$\angle XBC = 45^{\circ}, \angle XCB = 46{\circ}$$
  • $$\angle XBC = 45^{\circ}, \angle XCB = 45^{\circ}$$
  • $$\angle XBC = 45^{\circ}, \angle XCB = 60^{\circ}$$
  • $$\angle XBC = 45^{\circ}, \angle XCB = 25^{\circ}$$
From the following figure, we can say:  $$ AD= CE $$
State TRUE or FALSE

177278_0e883d43d9b245eb8620a95d438ccbd2.JPG
  • True
  • False
In a triangle $$ PQR,\:QR= PR $$ and $$ \angle P= 36^{0} .$$ Which is the largest side of the triangle?
  • $$QR$$
  • $$PR$$
  • $$PQ$$
  • None of these
In the given figure, $$ AB= AC $$ and $$ \angle DBC= \angle ECB= 90^{\circ} $$, then $$ AD= AE $$ .


177253_34cb3a065e3f4e3da0b03b2761edc9c9.png
  • True
  • False
In the following figure; $$ AC= CD $$, $$ AD= BD $$ and $$ \angle C= 58^{\circ} $$. Find angle $$ CAB $$.
176600.JPG
  • $$91.5^o$$
  • $$82^o$$
  • $$88.5^o$$
  • none of the above
$$ ABC $$ and $$ DBC $$ are two isosceles triangle on the same side of $$ BC $$. Then, $$ \angle BDA=  \angle CDA $$.

  • True
  • False
In the given figure, $$ AB= AC $$ and $$ \angle DBC= \angle ECB= 90^{\circ} $$,then $$ BD= CE $$ .

177252_864117fb88454d17952ac0932c66b945.png
  • True
  • False

In a $$\triangle$$ $$PQR, QR = PR$$ and $$\angle\,P\,=\,36^{\circ}.$$ The largest side of the triangle is:

  • $$PR$$
  • $$QR$$
  • $$PQ$$
  • Incomplete data

By which congruency are the following pair of triangles congruent:

In $$\Delta\,ABC$$ and $$\Delta \,DEF$$, $$\angle\,B = \angle\,E = 90\,^{\circ}, AC = DF$$ and $$BC = EF.$$

  • RHS
  • SAS
  • AAA
  • SSS
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers