Explanation
Given $$\triangle ABC \cong \triangle MBC$$.
Then the corresponding parts will also be equal.
That is by CPCT rule, corresponding parts of congruent triangles are equal.
Then, $$AB=MB$$, $$BC=BC$$, $$AC=MC$$, $$\angle A=\angle M$$, $$\angle B=\angle B$$ and $$\angle C=\angle C$$.
Thus, $$AB=MB$$ $$\implies$$ $$BA=BM$$.
Hence, option $$A$$ is correct.
Given $$\triangle ABC \cong \triangle XYZ$$.
Then, $$AB=XY$$, $$BC=YZ$$, $$AC=XZ$$, $$\angle A=\angle X$$, $$\angle B=\angle Y$$ and $$\angle C=\angle Z$$.
Thus, $$AC=XZ$$.
Hence, option $$C$$ is correct.
Given $$\triangle BCA \cong \triangle BCD$$.
Then, $$BC=BC$$, $$CA=CD$$, $$BA=BD$$, $$\angle B=\angle B$$, $$\angle C=\angle C$$ and $$\angle A=\angle D$$.
Thus, $$\angle A=\angle D$$.
Given $$\triangle ABC \cong \triangle DEF$$.
Then, $$AB=DE$$, $$BC=EF$$, $$AC=DF$$, $$\angle A=\angle D$$, $$\angle B=\angle E$$ and $$\angle C=\angle F$$.
Thus, $$BC=EF$$.
Then, $$AB=DE$$,
$$BC=EF$$,
$$AC=DF$$,
$$\angle A=\angle D$$,
$$\angle B=\angle E$$
$$\angle C=\angle F$$.
Thus, $$AB=DE$$.
Hence, option $$B$$ is correct.
Thus, $$\angle C=\angle F$$.
Please disable the adBlock and continue. Thank you.