CBSE Questions for Class 9 Maths Circles Quiz 5 - MCQExams.com

In the given figure, $$PQRS$$ is a cyclic trapezium in which $$PQ\parallel SR$$. If $$\angle$$P = 82$$^o$$, then $$\angle$$S is:
243073_109aa56e1a274d1696941eb2204bf695.png
  • $$98^o$$
  • $$108^o$$
  • Data not sufficient
  • None of these
In the figure, $$AB$$ is parallel to $$DC$$, $$\angle BCD=80^o$$ and $$\angle BAC = 25^o$$. Then $$\angle CAD$$ is:
244715.PNG
  • $$55^o$$
  • $$65^o$$
  • $$75^o$$
  • $$35^o$$
In the given figure, $$I$$ is the incentre of $$\Delta ABC$$. $$AI$$ produced meets the circumcircle of $$\Delta ABC$$ at $$D$$; $$\angle ABC = 55^{o}$$ and $$\angle ACB = 65^{o}$$.  Then  (i) $$\angle BCD$$ (ii) $$\angle CBD$$ (iii) $$\angle DCI$$ (iv) $$\angle BIC$$ are respectively:
243839_58687d10638c47d4b2f5b7c1f5730ac1.png
  • $$ { 50 }^{ o },\quad { 20 }^{ o },\quad { 32.5 }^{ o }\quad \& \quad { 240 }^{ o } $$
  • $$ { 30 }^{ o },\quad { 30 }^{ o },\quad { 62.5 }^{ o }\quad \& \quad { 120 }^{ o } $$
  • $$ { 35 }^{ o },\quad { 35 }^{ o },\quad { 82.5 }^{ o }\quad \& \quad { 100 }^{ o } $$
  • $$ { 40 }^{ o },\quad { 20 }^{ o },\quad { 32.5 }^{ o }\quad \& \quad { 150 }^{ o } $$
In the given figure, $$AB$$ is a diameter of a circle with the centre $$O$$ and chord $$ED$$ is parallel to $$AB$$ and $$\angle EAB = 65^{o}$$.  (i) $$\angle EBA$$ (ii) $$\angle BED$$ (iii) $$\angle BCD$$ are respectively:
243793_cf75e582d8264c34a305d94d227d0d52.png
  • (i) $$155^{o}$$

    (ii) $$25^{o}$$

    (iii) $$ 25^{o}$$
  • (i) $$ 65^{o}$$

    (ii) $$ 25^{o}$$

    (iii) $$ 155^{o}$$
  • (i) $$ 155^{o}$$

    (ii) $$ 65^{o}$$

    (iii) $$ 25^{o}$$
  • (i) $$ 25^{o}$$

    (ii) $$ 25^{o}$$

    (iii) $$ 155^{o}$$
In the adjoining figure, two circles intersect at $$A$$ and $$B$$. The centre of the smaller circle is $$O$$ and lies on the circumference of the larger circle. If $$PAC$$ and $$PBD$$ are straight lines and $$\angle APB = 75^{o}$$, find (i) $$\angle AOB$$, (ii) $$\angle ACB$$, (ii) $$\angle ADB$$. 
243831_73f57178901a495e9fde0efe5919064b.png
  • (i) $$\angle AOB = 150^{o}$$,
    (ii) $$\angle ACB = 30^{o}$$,
    (ii) $$\angle ADB = 30^{o}$$.
  • (i) $$\angle AOB = 150^{o}$$,
    (ii) $$\angle ACB = 30^{o}$$,
    (ii) $$\angle ADB = 60^{o}$$.
  • (i) $$\angle AOB = 150^{o}$$,
    (ii) $$\angle ACB = 40^{o}$$,
    (ii) $$\angle ADB = 30^{o}$$.
  • (i) $$\angle AOB = 120^{o}$$,
    (ii) $$\angle ACB = 30^{o}$$,
    (ii) $$\angle ADB = 30^{o}$$.
In the given figure, the two circles intersect at $$P$$ and $$Q$$. If $$\angle A = 80^{o}$$ and $$\angle D = 84^{o}$$, So (i) $$\angle QBC$$, (ii) $$\angle BCP$$ are:
243825_538093d99c7f4ecbb0d87e50da340c78.png
  • (i) $$\angle QBC = 96^{\circ}$$,

    (ii) $$\angle BCP = 100^{\circ}$$
  • (i) $$\angle QBC = 80^{\circ}$$,

    (ii) $$\angle BCP = 96^{\circ}$$
  • (i) $$\angle QBC = 100^{\circ}$$,

    (ii) $$\angle BCP = 80^{\circ}$$
  • (i) $$\angle QBC = 100^{\circ}$$,

    (ii) $$\angle BCP = 96^{\circ}$$
$$A, B$$, and $$C$$ are three points on a circle with centre $$O$$ such that $$BOC = 30^o$$ and $$\angle AOB = 60^o$$. If $$D$$ is a point on the circle other than the arc $$ABC$$, find $$\angle ADC$$. 
244105.png
  • $$45^o$$
  • $$60^o$$
  • $$22.5^o$$
  • $$30^o$$
$$ABCD$$ is a cyclic quadrilateral whose diagonals intersect at a point $$E$$. If $$\angle DBC = 70^o, \angle BAC = 30^o$$, find $$\angle BCD$$. Further, if AB= BC, find $$\angle ECD$$.
  • $$ { 70 }^{ o }\quad \& \quad { 60 }^{ o }.\\ $$
  • $$ { 30 }^{ o }\quad \& \quad { 100 }^{ o }.\\ $$
  • $$ { 80 }^{ o }\quad \& \quad { 50 }^{ o }.\\ $$
  • $$ { 100 }^{ o }\quad \& \quad { 30 }^{ o }.\\ $$
Two circles intersect in $$A$$ and $$B$$. Quadrilaterals $$PCBA$$ and $$ABDE$$ are inscribed in these circles such that $$PAE$$ and $$CBD$$ are line segments. If $$\angle P=95^o$$ and $$\angle C=40^o$$. Also, $$ \angle AED=z. $$ Then the value of $$z$$ is:
244576_96618f81570844ceaaeca5b0b0dde134.png
  • $$65^o$$
  • $$105^o$$
  • $$95^o$$
  • $$85^o$$
In the given figure, O is the centre of the circle. If $$\angle AOD = 140^{o}$$ and $$\angle CAB = 50^{o}$$,  then:
(i) $$\angle EDB$$ (ii) $$\angle EBD$$ are respectively:

243798_a1195ce8fb4442de88a7a817b4dd57f8.png
  • $$ { 70 }^{ o }\quad \& \quad { 50 }^{ o } $$
  • $$ { 50 }^{ o }\quad \& \quad { 110 }^{ o } $$
  • $$ { 30 }^{ o }\quad \& \quad { 70 }^{ o } $$
  • $$ { 120 }^{ o }\quad \& \quad { 130 }^{ o } $$
In the given figure, $$AB$$ is a diameter of a circle with centre $$O$$. If $$ADE$$ and $$CBE$$ are straight lines, meeting a $$E$$ such that $$\angle BAD = 35^{o}$$ and $$\angle BED = 25^{o}$$,  Then : (i) $$\angle DCB$$ (ii) $$\angle DBC$$ (iii) $$\angle BDC$$, are respectively.
243817_50d3114e63d6407083dc39dad758646a.png
  • $$ 55^{ o },\quad 100^{ o }\quad \& \quad 35^{ o } $$
  • $$ 25^{ o },\quad 120^{ o }\quad \& \quad 35^{ o } $$
  • $$ 35^{ o },\quad 115^{ o }\quad \& \quad 30^{ o } $$
  • $$ 65^{ o },\quad 135^{ o }\quad \& \quad 255^{ o } $$
In the given figure $$\text{O}$$ is the center of the circle and measure of $$\angle \text{AOC} $$ is $$ \displaystyle 100^{\circ}  $$ what is the value of $$ \displaystyle \angle \text{ADC}  $$ ?
376646_c6125027127f411b9d150b3ce31d298b.png
  • $$ \displaystyle 30^{\circ} $$
  • $$ \displaystyle 40^{\circ} $$
  • $$ \displaystyle 50^{\circ} $$
  • $$ \displaystyle 60^{\circ} $$
$$AOD$$ is a diameter of the circle with centre $$O.$$ Given that $$\angle BDA=18^{\circ}$$ and $$\angle BDC=38^{\circ}. $$ Find $$\angle BCD$$.

285694_e4d98a0d51f545b8b7fa40af5b8f1719.png
  • $$100^{\circ}$$
  • $$108^{\circ}$$
  • $$126^{\circ}$$
  • $$152^{\circ}$$
In the given figure $$AB$$ is diameter of circle with centre $$O$$ and chord $$ED$$ is parallel to $$AB$$ and $$\angle EAB=65^o$$. Then $$m\angle EBD$$ is:
244731.PNG
  • $$55^o$$
  • $$65^o$$
  • $$25^o$$
  • $$40^o$$
Which of the following statement is false?
  • If we join any two points on a circle we get a diameter of the circle
  • A diameter of a circle contains the centre of the circle
  • A semicircle is an arc
  • The length of a circle is called its circumference
$$PQRS$$ is a cyclic quadrilateral. Find the measure of $$\angle P$$ and $$\angle Q$$.
271375_dc26be58b8f54d399d554957d6487ae6.png
  • $$135^{\circ},60^{\circ}$$
  • $$60^{\circ},120^{\circ}$$
  • $$60^{\circ},90^{\circ}$$
  • $$100^{\circ},120^{\circ}$$
The perpendicular drawn from centre to the chord divides the chord in a ratio of _____
  • $$1:1$$
  • $$1:2$$
  • $$2:1$$
  • none of these
$$\text{ABCD}$$ is a cyclic quadrilateral whose side $$\text{AB}$$ is a diameter of the circle through $$\text{A, B, C}$$ and $$\text{D}$$. If $$\angle \text{ADC}=130^{\circ}$$, find $$\angle \text{BAC}$$.
271119_0ea17b43e9ed46f0a32cd2e4896af3e9.png
  • $$40^{\circ}$$
  • $$50^{\circ}$$
  • $$60^{\circ}$$
  • $$30^{\circ}$$
In the given diagram, $$AB$$ is the diameter of the given circle with centre $$O.$$ $$C$$ and $$D$$ are points on the circumference of the circle. If $$\angle ABD=35^{\circ}$$ and $$\angle CDB=15^{\circ},$$ then $$\angle CBD$$ equals:

285094_9364387af8af4b9bb7a1f741c28fad59.png
  • $$55^{\circ}$$
  • $$75^{\circ}$$
  • $$40^{\circ}$$
  • $$25^{\circ}$$
If two chords of a circle are equidistant from the center of the circle then they are 
  • Equal to each other
  • Not equal to each other
  • Intersect each other
  • None of these
In the figure, $$AB$$ is parallel to $$DC$$, $$\angle BCD=80^o$$ and $$\angle BAC = 25^o$$. Then m$$\angle ADC$$ is:
244715.PNG
  • $$100^o$$
  • $$80^o$$
  • $$65^o$$
  • $$55^o$$
Then m$$\angle EBA$$ is:
244732_28efb6b50a5f4eb39b39a6b0aed03d90.png
  • $$25^o$$
  • $$20^o$$
  • $$35^o$$
  • $$70^o$$
$$ABC$$ is an isosceles triangle in the given circle with centre $$O,$$ if  $$\angle ABC=42^{\circ},$$ then find the measure of $$ \angle CDE.$$
271382_b915b4a6503b4cdc9d639c66fdd726b0.png
  • $$84^{\circ}$$
  • $$138^{\circ}$$
  • $$96^{\circ}$$
  • $$148^{\circ}$$
Find the value of $$(a + b)$$. 
291798_8dd8c1ab434c41c184e879cc7ef18be7.png
  • $$\displaystyle 40^{\circ}$$
  • $$\displaystyle 80^{\circ}$$
  • $$\displaystyle 120^{\circ}$$
  • $$\displaystyle 160^{\circ}$$
In the given figure, $$AB = BC = CD$$. If $$\displaystyle \angle BAC=25^{\circ}$$, then value of $$\displaystyle \angle AED$$ is:
291790_dd494eb1bc3147118fb97d52e7f09b27.png
  • $$\displaystyle 50^{\circ}$$
  • $$\displaystyle 60^{\circ}$$
  • $$\displaystyle 65^{\circ}$$
  • $$\displaystyle 75^{\circ}$$
In figure, AB is a chord of a circle with centre O and AP is the tangent at A such that $$\angle BAP=75^{\circ}$$. Then $$\angle ACB$$ is equal to:
317888_a04dac90fd474b16af7e501fb33305fc.png
  • $$135^{\circ}$$
  • $$120^{\circ}$$
  • $$105^{\circ}$$
  • $$90^{\circ}$$
At one end $$A$$ of a diameter $$AB$$ of a circle of radius $$5$$ cm, tangent $$XAY$$ is drawn to the circle. The length of the chord $$CD$$ parallel to $$XY$$ at a distance $$8$$ cm from $$A$$ is:
  • $$4$$ cm
  • $$5$$ cm
  • $$6$$ cm
  • $$8$$ cm
In the given figure, the value of $$a$$ is:
291837_1a5e4793f2f144dea551ec1d73774056.png
  • $$\displaystyle 30^{\circ}$$
  • $$\displaystyle 40^{\circ}$$
  • $$\displaystyle 60^{\circ}$$
  • $$\displaystyle 90^{\circ}$$
In the figure, $$\angle BDC=$$
327957_6ed92ee7227549c8bf4599894cdee248.png
  • $$95^{\circ}$$
  • $$105^{\circ}$$
  • $$100^{\circ}$$
  • $$110^{\circ}$$
$$ABCD$$ is a cyclic quadrilateral $$AE$$ is drawn parallel to $$CD$$ and $$BA$$ is produced. If $$\displaystyle \angle ABC=92^{\circ}$$ and $$\displaystyle \angle FAE=20^{\circ},$$ then $$\displaystyle \angle BCD=$$ 
316534.png
  • $$\displaystyle 88^{\circ}$$
  • $$\displaystyle 108^{\circ}$$
  • $$\displaystyle 115^{\circ}$$
  • $$\displaystyle 72^{\circ}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers