CBSE Questions for Class 9 Maths Probability Quiz 1 - MCQExams.com

A die having six faces is tossed $$80$$ times and the data is as below:

Outcome



$$1$$



$$2$$



$$3$$



$$4$$



$$5$$



$$6$$



Frequency



$$10$$



$$20$$



$$10$$



$$28$$



$$8$$



$$4$$


Find $$P (1) $$.

  • $$0.175$$
  • $$0.135$$
  • $$0.145$$
  • $$0.125$$
There are $$40$$ students in a class and their results is presented as below :
Result (Pass/Fail)PassFail
Number of Students$$30$$$$10$$

If a student chosen at random out of the class, find the probability that the student has passed the examination
  • $$0.12$$
  • $$0.36$$
  • $$0.65$$
  • $$0.75$$

$$400$$ students of class $$X$$ of a school appeared in a test of $$100$$ marks in the subject of social
studies and the data about the marks secured is as below :

            Marks
          secured
Number of
Students
            $$0-25$$     $$50$$
          $$26-50$$    $$220$$
          $$51-75$$    $$100$$
        Above $$75$$      $$30$$
Total number of students    $$400$$

If the result card of a student he picked up at random, what is the probability that the student has secured more than $$50$$ marks.

  • $$0.586$$
  • $$0.75$$
  • $$0.325$$
  • $$0.1$$

A coin is tossed $$150$$ times and the outcomes are recorded. The frequency distribution of the outcomes $$H$$ (i.e, head) and $$T$$ (i.e, tail) is given below :

Outcome$$H$$$$T$$
Frequency$$85$$$$65$$

Find the value of $$P(H)$$, i.e, probability of getting a head in a single trial.

  • $$P (H) = 0.75$$ (approx)
  • $$P (H) = 0.9$$ (approx)
  • $$P (H) = 0.15$$ (approx)
  • None of these
A die is thrown $$200$$ times and the outcomes $$1, 2, 3, 4, 5, 6$$ have frequencies as below:

Outcome



$$1$$



$$2$$



$$3$$
 


$$4$$



$$5$$



$$6$$



Frequency



$$40$$



$$38$$



$$43$$



$$29$$



$$28$$



$$22$$


Find the probabilities of getting a number more than $$1$$ and less than $$6$$ in a toss (trial).

  • $$0.65$$
  • $$0.55$$
  • $$0.69$$
  • None of these

There are $$500$$ packets in a large box and each packet contains $$4$$ electronic devices in it. On testing, at the time of packing, it was noted that there are some faulty pieces in the packets. The data is as below:

No. of faulty
devices in a packet
Number of packets
                 $$0$$             $$300$$
                 $$1$$             $$100$$
                 $$2$$               $$50$$
                 $$3$$               $$30$$
                 $$4$$               $$20$$
Total number of packets              $$500$$

If one packet is drawn from the box, what is the probability that all the four devices in the packet are without any fault?

  • $$0.3$$
  • $$0.75$$
  • $$0.6$$
  • $$0.95$$
In a shooting game, John shoots the balls $$20$$ times out of $$40$$ trials. What is the empirical probability of the shooting event?
  • $$\dfrac{3}{2}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{5}{2}$$
  • $$\dfrac{7}{2}$$
Find probability of bag chosen out random contains more than $$5\ kg$$.
  • $$0.7$$
  • $$0.8$$
  • $$0.9$$
  • $$0.6$$

There are $$40$$ students in a class and their results is presented as below :

Result (Pass/Fail)PassFail
Number of Students$$30$$$$10$$

If a student chosen at random out of the class, find the probability that the student has passed the examination.

  • $$0.75$$
  • $$0.6$$
  • $$0.45$$
  • $$0.30$$
What is the probability that there are $$5$$ Mondays in the month of February 2016?
  • $$0$$
  • $$\dfrac{1}{7}$$
  • $$\dfrac{2}{7}$$
  • None of the above
When a coin is tossed at random, then the probability of getting a head is ________.
  • $$0$$
  • $$\dfrac {1}{2}$$
  • $$1$$
  • $$2$$
Two men hit at a target with probabilities $$\dfrac{1}{2}$$ and $$\dfrac{1}{3}$$ respectively. What is the probability that exactly one of them hits the target?
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{2}{3}$$
In a single throw of a die, the probability of getting a multiple of $$3$$ is ____________.
  • $$\displaystyle\frac{1}{2}$$
  • $$\displaystyle\frac{1}{3}$$
  • $$\displaystyle\frac{1}{6}$$
  • $$\displaystyle\frac{3}{4}$$
A die is tossed $$80$$ times and the number $$3$$ is obtained $$14$$ times. Now, a dice is tossed at random, then the probability of getting the number $$3$$ is ________.
  • $$\dfrac {7}{40}$$
  • $$\dfrac {3}{14}$$
  • $$\dfrac {1}{2}$$
  • $$\dfrac {3}{40}$$

A tyre manufacturing company kept a record of the distance covered before a tyre needed to be replaced. The table show the result of $$1000$$ cases :

Distance in $$Km$$Frequency
Less than $$4000$$       $$20$$
$$4000$$ to $$9000$$      $$210$$
$$9000$$ to $$14000$$      $$325$$
More than $$14000$$      $$445$$

If you buy a tyre of this company what is the probability that it will need to be replaced after it has covered somewhere between $$4000\, km$$ and $$14000\, km$$?

  • $$0.65$$
  • $$0.625$$
  • $$0.125$$
  • None of these

There are $$500$$ packets in a large box and each packet contains $$4$$ electronic devices in it. On testing, at the time of packing, it was noted that there are some faulty pieces in the packets. The data is as below :

No. of faulty devices in a packetNumber of packets
                    $$0$$             $$300$$
                    $$1$$             $$100$$
                    $$2$$              $$50$$
                    $$3$$              $$30$$
                    $$4$$              $$20$$    
Total number of packets             $$500$$   

If one packet is drawn from the box, what is the probability that all the four devices in the packet are without any fault?

  • $$0.5$$
  • $$0.6$$
  • $$0.8$$
  • $$0.9$$

Fifty seeds were selected at random from each of $$5$$ bags $$A, B, C, D, E$$ of seeds, and were kept under standardised conditions equally favourable to germination. After $$20$$ days, the number of seeds which had germinated in each collection were counted and recorded as follow :

Bag$$A$$$$B$$$$C$$$$D$$$$E$$

Number of seeds

 germinated

$$40$$$$48$$$$42$$$$39$$$$41$$

What is the probability of germination of

$$(i)$$ more than $$40$$ seeds in a bag?

$$(ii)$$ $$49$$ seeds in a bag?

$$(iii)$$ more than $$35$$ seeds in a bag?


  • $$(i)\, 0.690$$
    $$(ii)\, 0.09$$
    $$(iii)\, 1$$
  • $$(i)\, 0.80$$
    $$(ii)\, 0.006$$
    $$(iii)\, 1$$
  • $$(i)\, 0.70$$
    $$(ii)\, 0.001$$
    $$(iii)\, 1$$
  • $$(i)\, 0.60$$
    $$(ii)\, 0$$
    $$(iii)\, 1$$
A die is thrown $$400$$ times, the frequency of the outcomes of the events are given as under.
outcome
$$1$$
$$2$$
$$3$$
$$4$$
$$5$$
$$6$$
Frequency
$$70$$
$$65$$
$$60$$
$$75$$
$$63$$
$$67$$
Find the probability of occurrence of an odd number.
  • The probability of occurrence of odd number$$=\dfrac{5}{7}$$
  • The probability of occurrence of odd number$$=\dfrac{9}{2}$$
  • The probability of occurrence of odd number$$=\dfrac{193}{400}$$
  • The probability of occurrence of odd number$$=\dfrac{200}{299}$$
The probability that a two digit number selected at random will be a multiple of '$$3$$' and not a multiple of '$$5$$' is
  • $$\displaystyle \frac{2}{15}$$
  • $$\displaystyle \frac{4}{15}$$
  • $$\displaystyle \frac{1}{15}$$
  • $$\displaystyle \frac{4}{90}$$
Two coins are tossed $$1000$$ times and the outcomes are recorded as below:
No of heads
$$2$$
$$1$$
$$0$$
Frequency
$$200$$
$$550$$
$$250$$
Based on this information, the probability for at most one head is $$\dfrac{a}{b}$$, where $$(a,b)=1$$. Then $$\dfrac{a}{b}$$ is
  • $$\dfrac{1}{5}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{4}{5}$$
  • $$\dfrac{3}{4}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 9 Maths Quiz Questions and Answers