Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 11 - MCQExams.com

Let a1,a2,a3,....,a11 be real numbers satisfying a1=15,272a2>0 and ak=2ak1ak2 for k=3,4,.......,11.
 If a21+a22+...+a21111=90, then the value of a1+a2+...+a1111 is equal to
  • 1
  • 5
  • 9
  • 0
If nr=1(r)(r+1)(2r+3)=an4+bn3+cn2+dn+e, then
  • a+c=b+d
  • e=0
  • a,b23,c1 are in A.P.
  • ca is an integers
nk=1(km=1m2)=an4+bn3+cn2+dn+e then 
  • a=112
  • b=116
  • d=16
  • e=0
Evaluate nr=1[rk=1k][log1/2(4xx2)]r. Find x for which summation is a finite number as n
  • x(0,2+152)
  • x(0,2152)
  • x(0,2+152)
  • x(0,2152)
It is known that r=11(2r1)2=π28.  Then r=11r2 is equal to
  • π224
  • π23
  • π26
  • none of these
if 112+122+132 + .......... upto =π26, then 112+132+152 + ........... = .......... .
  • π2/8
  • π2/12
  • π2/3
  • π2/9
Let {an}and{bn} are two sequences given by an=(x)1/2n+(y)1/2nandbn=(x)1/2n(y)1/2n for all n ϵ N. The value of a1a2a3...an is equal to
  • x - y
  • x+ybn
  • xybn
  • xybn
If a number sequence begins 1,3,4,6,7,9,10,12..., which of the following numbers does NOT appear in the sequence?
  • 34
  • 43
  • 57
  • 65
  • 72
Sum of the series 88r=1(1)r+11sin2(r+1)sin21 is equal to
  • cot2sin2
  • cot2sin2
  • cot2
  • cot2sin22
The expression
22+1221+32+1321+42+1421+...........+(2011)2+1(2011)21
lies in the interval
  • (2011,201012)
  • (201112011,201112012)
  • (2011,201112)
  • (2012,201212)
Numbers can be classified into two categories,depending on their divisible conditions.
They are (i) Even numbers (2p)pϵN (ii) odd numbers (2p+1)pϵN
a.    a1,a2......a2013 are integers, not necessarily distinct.
x=(1)a1+(1)a2+.....+(1)a1006
y=(1)a1007+(1)a1008+......+(1)a2013

Then which of the following is true?
  • (1)x=1;(1)y=1
  • (1)x=1;(1)y=1
  • (1)x=1;(1)y=1
  • (1)x=1;(1)y=1
If j, k, and n are consecutive integers such that 0<j<k<n and the units (ones) digit of the product jn is 9, what is the units digit of k ? 
  • 0
  • 1
  • 2
  • 3
  • 4
11.2+12.3+13.4++1n(n+1)=
  • 1n+1
  • n+2n(n+1)
  • n+3n(n+1)
  • nn+1
It is given that r=11(2r1)2=π28, then r=11r2 is equal to
  • π224
  • π23
  • π26
  • None of these
When x<1, find the sum of the infinite series
1(1x)(1x3)+x2(1x3)(1x5)+x4(1x5)(1x7)+.....
  • 1x(1x2)(1x3)
  • 1(1x)(1x2)
  • 1x(1x)(1x2)
  • xx2(1x)(1x3)
The sum of the series n=1sin(n!π720) is
  • sin(π180)+sin(π360)+sin(π540)
  • sin(π6)+sin(π30)+sin(π120)+sin(π360)
  • sin(π6)+sin(π30)+sin(π120)+sin(π360)+sin(π720)
  • sin(π180)+sin(π360)
The value of 1000[11×2+12×3+13×4+...+1999×1000] is equal to 
  • 1000
  • 999
  • 1001
  • 1999
Let {an} be a sequence of numbers satisfying the relation (3an+1)(6+an)=18 for all n0 and a0=3. Then
limn12n+2nj=01aj
  • 118
  • 16
  • 14
  • 13
Let A=16{-4}+2^{-4}+3^{-4}+4^{-4}+... and B=1^{-4}+3^{-4}+5^{-4}+7^{-4}+.... The ratio \dfrac{A}{B} in the lowest form is
  • \dfrac{16}{15}
  • \dfrac{15}{14}
  • \dfrac{15}{16}
  • \dfrac{13}{12}
The variance of the series
a,a+d,a+2d,.....a+(2n-1)d,a+2nd is
  • \cfrac { n(n+1) }{ 2 } { d }^{ 2 }
  • \cfrac { n(n-1) }{ 6 } { d }^{ 2 }
  • \cfrac { n(n+1) }{ 6 } { d }^{ 2 }
  • \cfrac { n(n+1) }{ 3 } { d }^{ 2 }
Which of the following options will continue the given series?
29, 34, 32, 37, 35, ?
  • 36
  • 39
  • 40
  • 42
The value of S=\sqrt { 1+\cfrac { 1 }{ { 1 }^{ 2 } } +\cfrac { 1 }{ { 2 }^{ 2 } }  } +\sqrt { 1++\cfrac { 1 }{ { 2 }^{ 2 } } +\cfrac { 1 }{ { 3 }^{ 2 } }  } +...+\sqrt { 1++\cfrac { 1 }{ { (2014) }^{ 2 } } +\cfrac { 1 }{ { (2015) }^{ 2 } }  } is
  • 2015
  • 2015-\cfrac { 1 }{ 2015 }
  • 2016-\cfrac { 1 }{ 2016 }
  • 2014-\cfrac { 1 }{ 2014 }
If s_n = \displaystyle \sum_{r=0}^n \dfrac {1}{^nC_r} and t_n = \displaystyle \sum_{r=0}^n \dfrac {r}{^nC_r} , then \dfrac {t_n}{s_n} is equal to - 
  • \dfrac {n}{2}
  • \dfrac {n}{2} -1
  • n - 1
  • \dfrac{2n - 1}{2}
Solve the given series:
\dfrac {1.2^2+2.3^2+3.4^2+...n(n+1)^2}{1.2+2^2.3+3^2.4+...n^2(n+1)}
  • (3n+1)(3n+5)
  • \dfrac {n}{2n+1}
  • \dfrac {3n+1}{3n+5}
  • \dfrac {3n+5}{3n+1}
If \displaystyle \sum _{ r =1 }^{n}{ t_r = \frac{n(n+1)(n+2)(n+3)}{8} }, then \displaystyle \sum _{r = 1}^{n}{ \frac{1}{t_r}} equals
  • \displaystyle - \left( \frac{1}{(n+1)(n+2)} - \frac{1}{2} \right)
  • \displaystyle \left( \frac{1}{(n+1)(n+2)} - \frac{1}{2} \right)
  • \displaystyle \left( \frac{1}{(n+1)(n+2)} + \frac{1}{2} \right)
  • \displaystyle \left( \frac{1}{(n-1)(n-2)} + \frac{1}{2} \right)
The value of \sum _{ n=1 }^{ 9999 }{ \cfrac { 1 }{ \left( \sqrt { n } +\sqrt { n+1 }  \right) \left( \sqrt [ 4 ]{ n } +\sqrt [ 4 ]{ n+1 }  \right)  }  } is
  • 9
  • 99
  • 999
  • 9999
Let (1 + x)^{m} = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + .... + C_{m}x^{m}, where C_{r} = ^{m}C_{r} and A = C_{1}C_{3} + C_{2}C_{4} + C_{3}C_{5} + C_{4}C_{6} + .... + C_{m - 2}C_{m}, then
  • A\geq ^{2m}C_{m - 2}
  • A < ^{2m}C_{m - 2}
  • A < C_{0}^{2} + C_{1}^{2} + C_{2}^{2} + .... C_{m}^{2}
  • A > C_{0}^{2} + C_{1}^{2} + C_{2}^{2} + ....C_{m}^{2}
In a certain code language, DIPLOMA is written as FERHQIC, then what is the code for PENCILS in the language? 
  • RAPYHKU
  • RAPYKHU
  • RPAYKHU
  • RAPKYHU
If x\in R and S=1-{ C }_{ 1 }\cfrac { 1+x }{ { \left( 1+nx \right)  }^{  } } +{ C }_{ 2 }\cfrac { 1+2x }{ { \left( 1+nx \right)  }^{ 2 } } -{ C }_{ 3 }\cfrac { 1+3x }{ { \left( 1+nx \right)  }^{ 3 } } +...upto\quad (n+1) terms, then S
  • equal {x}^{2}
  • equals 1
  • equals 0
  • is independent
The sum to infinite of the series
S=1+\cfrac { 2 }{ 3 } +\cfrac { 6 }{ { 3 }^{ 2 } } +\cfrac { 6 }{ { 3 }^{ 3 } } +\cfrac { 6 }{ { 3 }^{ 4 } } +.....\quad is
  • 4
  • 3
  • 2
  • 6
The (n+1)^{th} term from the end in (x - \frac{1}{x})^{3n} is 
  • 3nc_n.X^{-n}
  • (-1)^n. 3nc_n .X^{-n}
  • 3nc_nX^n
  • (-1)^n. 3nc_n.X^n
If sum of the series \displaystyle \sum_{n = 0}^{\infty} r^{n} = S, for |r| < 1, then sum of the series \displaystyle \sum_{n = 0}^{\infty} r^{2n}
  • S^{2}
  • \dfrac {S^{2}}{2S + 1}
  • \dfrac {S^{2}}{S^{2} - 1}
  • None of these
The value of 
\displaystyle \sum _{ n=0 }^{ 1947 }{ \cfrac { 1 }{ { 2 }^{ n }+\sqrt { { 2 }^{ 1947 } }  }  } is equal to
  • \cfrac { 487 }{ \sqrt { { 2 }^{ 1945 } } }
  • \cfrac { 1946 }{ \sqrt { { 2 }^{ 1947 } } }
  • \cfrac { 1947 }{ \sqrt { { 2 }^{ 1947 } } }
  • \cfrac { 1948 }{ \sqrt { { 2 }^{ 1947 } } }
\displaystyle \sum_{r = 0}^{n}{t^3 \left( \frac{^nC_r}{^nC_{r-1}} \right)^2 } is equal to
  • \displaystyle \frac{n(n+1)(n+2)^2}{12}
  • \displaystyle \frac{n(n+1)^2 (n+2)}{12}
  • \displaystyle \frac{n(n+1)(n+2)}{12}
  • None of these
If x=\dfrac{1}{5}+\dfrac{1.3}{5.10}+\dfrac{1.3.5}{5.10.15}+.....\infty then 3x^2+6x=
  • 1
  • 2
  • 3
  • 4
The value of \displaystyle\sum^{n}_{i=1}\sum^{i}_{j=1}\sum^j_{k=1}1=220, then the value of n equals.
  • 11
  • 12
  • 10
  • 9
Let { T }_{ r } and { S }_{ r } be the { r }^{ th } term and sum up to { r }^{ th } term of a series respectively. If for an odd natural number n,{ S }_{ n }=n and { T }_{ n }=\dfrac { { T }_{ n-1 } }{ { n }^{ 2 } }, then { T }_{ m } (m being even) is:
  • \dfrac { 2 }{ 1+{ m }^{ 2 } }
  • \dfrac { 2{ m }^{ 2 } }{ 1+{ m }^{ 2 } }
  • \dfrac { { \left( m+1 \right) }^{ 2 } }{ 2+{ \left( m+1 \right) }^{ 2 } }
  • \dfrac { 2{ \left( m+1 \right) }^{ 2 } }{ 1+{ \left( m+1 \right) }^{ 2 } }
Sum of the series \displaystyle\sum^n_{r=1}(r^2+1)r! is?
  • (n+1)!
  • (n+2)!-1
  • n-(n+1)!
  • n-(n+2)!
If a_{1}, a_{2}, ......., a_n(n > 3) are all unequal positive real numbers, and 

E = \dfrac{(1 + a_{1} + a_{1}^{2})(1 + a_{2} + a_{2}^{2})......(1 + a_{n} + a_{n}^{2})}{a_{1}, a_{2}, ......., a_{n}}
 then which of the following best describes E?
  • E \leq 2^{n}
  • E \geq 3^{n}
  • E > 3^{n}
  • E > 2^{n}
The sum of the series {1 \over 2} + {3 \over 4} + {7 \over 8} + {{15} \over {16}} + ....... up to low upon to n term is to the 

  • n - 1 + {2^{ - n}}
  • {2^{ - n}} - 1
  • n - 2
  • None of these
The sume of the series 1^3 - 2^3 + 3^3 - ........ + 9^3 =
  • 300
  • 125
  • 425
  • 0
The positive integer n for which 2 \times {2^2} + 3 \times {2^3} + 4 \times {2^4} + ....... + n \times {2^n} = {2^{^{n + 10}}} is______
  • 510
  • 511
  • 512
  • 513
The sum to infinite of the series
1 + {2 \over 3} + {6 \over {{3^2}}} + {{10} \over {{3^3}}} + {{14} \over {{3^4}}} + ........
  • 2
  • 3
  • 4
  • 6
If \displaystyle \lim _{ x\rightarrow 0^+ }{ x\left( \left[ \dfrac { 1 }{ x }  \right] +\left[ \dfrac { 5 }{ x }  \right] +\left[ \dfrac { 11 }{ x }  \right] +\left[ \dfrac { 19 }{ x }  \right] +\left[ \dfrac { 29 }{ x }  \right] +.......to\quad n\quad terms \right)  }=430 (where [.] denotes the greatest integer function), then n=
  • 8
  • 9
  • 10
  • 11
If \displaystyle\sum _{ n=1 }^{ 2013 }{ \tan { \left( \dfrac { \theta  }{ { 2 }^{ n } }  \right)  }  } \sec { \left( \dfrac { \theta  }{ { 2 }^{ n-1 } }  \right)  } =\left( \dfrac { \theta  }{ { 2 }^{ a } }  \right) -\left( \dfrac { \theta  }{ { 2 }^{ b } }  \right) then (b+a) equals 
  • 2014
  • 2012
  • 2013
  • 2019
If \sum^5_{n=1}\dfrac{1}{n(n+1)(n+2)(n+3)}=\dfrac{k}{3}, then k is equal to?
  • \dfrac{55}{336}
  • \dfrac{17}{105}
  • \dfrac{19}{112}
  • \dfrac{1}{6}
Sum to n terms of the series\dfrac { 1 }{ 1.2.3.4 } +\dfrac { 1 }{ 2.3.4.5 } +\dfrac { 1 }{ 3.4.5.6 } +.........., is
  • \dfrac { { n }^{ 3 } }{ 3\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }
  • \dfrac { { n }^{ 3 }+{ 6n }^{ 2 }-3n }{ 6\left( n+2 \right) \left( n+3 \right) \left( n+4 \right) }
  • \dfrac { 15{ n }^{ 2 }+7n }{ 4n\left( n+1 \right) \left( n+5 \right) }
  • \dfrac { { n }^{ 3 }+6{ n }^{ 2 }+11n }{ 18\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }
The sum to infinity of the series:
\dfrac {3}{{1}^{3}}+\dfrac {5}{{1}^{3}+{2}^{3}}+\dfrac {7}{{1}^{3}+{2}^{3}+{3}^{3}}+.. is-
  • 5
    • 4
  • 6
  • 1
The sum of infinite series \dfrac{1.3}{2}+\dfrac{3.5}{2^2}+\dfrac{5.7}{2^3}+\dfrac{7.9}{2^4}+...\infty.
  • 21
  • 22
  • 23
  • None
If \dfrac{x}{0.2} + \dfrac{x}{0.3} + \dfrac{x}{0.6} + \dfrac{x}{0.4} + \dfrac{x}{0.5} = 87, then the value of x is equal to 
  • 0
  • 4
  • 6
  • 1
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers