Explanation
1=1, here n=1\Rightarrow \dfrac {1(1+1)}{2}=1 1+2=3, here n=2\Rightarrow \dfrac {2(2+1)}{2}=3
1+2+3=6, here n=3\Rightarrow \dfrac {3(3+1)}{2}=6
1+2+3+4=10, here n=4\Rightarrow \dfrac {4(4+1)}{2}=10
{ n }^{ th } term is sum of n terms
Therefore, { T }_{ n }=\dfrac { n(n+1) }{ 2 }
The top layer has (13\times 13) balls the layer below it will have (14\times 14) balls
We have 18 layers
So the total number of balls
N=(13\times 13)+(14\times 14)+.......(30\times 30)\\ N={ 13 }^{ 2 }+{ 14 }^{ 2 }+.....{ 30 }^{ 2 }
Sum of squares of first n natural numbers is \dfrac { n(n+1)(2n+1) }{ 6 } \\
\therefore N= sum of first 30 - sum of first 12
N=\dfrac { 30\times 31\times 61 }{ 6 } -\dfrac { 12\times 13\times 25 }{ 6 } \\ N=8805\\
\Rightarrow 8000<N<9000
\sum _{ r=1 }^{ n }{ \left( { r }^{ 2 }+1 \right) r! }
\Rightarrow \sum_{ r=1 }^{ n }{ ( { r }^{ 2 }+1+2r-2r ) r! }
\Rightarrow \sum_{ r=1 }^{ n }{ ( { ( r+1) }^{ 2 }.r!-2r.r! ) }
\Rightarrow \sum_{ r=1 }^{ n }{ ( { ( r+1) }^{ }.(r+1)!-2r.r! ) }
\Rightarrow \sum_{ r=1 }^{ n }{ [ ( r+2-1 )( r+1 )!-2( ( r+1-1 )r! ) ] }
\Rightarrow \sum_{ r=1 }^{ n }{ [ ( r+2 )( r+1 )!-( r+1 )!-2( ( r+1 )r!-r! ) ] }
\Rightarrow \sum_{ r=1 }^{ n }{ \left [ ( r+2 )!-( r+1 )!-2.( r+1 )!+2.r!) \right] }
T_1=3!-2!- 2.2!+2.1!
T_2=4!-3!-2.3!+2.2!
T_3=5!-4!-2.4!+2.3!
.
T_n=(n+2)!-(n+1)!-2.(n+1)!+2.n!
-------------------
Sum=S_n=(n+2)!-2!-2(n+1)!+2.1!
S_n=(n+2)!-2(n+1)!-2+2
S_n=(n+1)![n+2-2]
S_n=n.(n+1)!
Correct answer is C
\cfrac { 5 }{ 7 } =\cfrac { { a }_{ 2 } }{ 2! } +\cfrac { { a }_{ 3 } }{ 3! } +\cfrac { { a }_{ 4 } }{ 4! } +\cfrac { { a }_{ 5 } }{ 5! } +\cfrac { { a }_{ 6 } }{ 6! } +\cfrac { { a }_{ 7 } }{ 7! } \\ \Rightarrow \cfrac { 5 }{ 7 } =\cfrac { 1 }{ 2 } \left( { a }_{ 2 }+\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\left( \cfrac { { a }_{ 7 } }{ 7 } \right) \right) \right) \right) \\ \cfrac { 10 }{ 7 } ={ a }_{ 2 }+\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\left( \cfrac { { a }_{ 7 } }{ 7 } \right) \right) \right) \\ 1+\cfrac { 3 }{ 7 } ={ a }_{ 2 }+\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\left( \cfrac { { a }_{ 7 } }{ 7 } \right) \right) \right)
So, as expression is less than 1
{ a }_{ 2 }=1\\ \cfrac { 3 }{ 7 } =\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\cfrac { 1 }{ 5 } \left( { a }_{ 5 }+.....\cfrac { { a }_{ 7 } }{ 7 } \right) \right) \right) \\ 1+\cfrac { 2 }{ 7 } ={ a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\cfrac { 1 }{ 5 } \left( { a }_{ 5 }+\cfrac { 1 }{ 6 } \left( { a }_{ 6 }+\cfrac { { a }_{ 7 } }{ 7 } \right) \right) \right) \\ { a }_{ 3 }=1
Similarly
{ a }_{ 4 }=1\quad \quad { a }_{ 7 }=2\\ { a }_{ 5 }=0\\ { a }_{ 6 }=4
So, Sum { a }_{ 7 }-1+1+1+4+2\\ =9
Please disable the adBlock and continue. Thank you.