Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 7 - MCQExams.com

The value of the sum 1.2.3+2.3.4+3.4.5+....... upto n terms=
  • 16n2(2n2+1)
  • 16n2(n21)(2n1)(2n+3)
  • 18(n2+1)(n2+5)
  • 14(n)(n+1)(n+2)(n+3)
If the coefficients of x9,x10,x11 in the expansion of (1+x)n are in arithmetic progression then n241n=
  • 398
  • 298
  • 398
  • 198
The value of 1(2n1)!0!+1(2n3)!2!+1(2n5)!4!+....+11!(2n2)! equal to
  • 22n1
  • 22n2
  • 22n3
  • 22n2(2n1)!
If xR, find the minimum value of the expression 3x+31x.
  • 32
  • 23
  • 33
  • none of these
Sum of the series
(100C1)2+2(100C2)2+3(100C3)2+.....100(100C100)2 equals:
  • 299[1.3.5.....(199)](99)!
  • 100.100C100
  • 50.200C100
  • 100.199C99
The sum of the first n terms of the series 12+2.22+32+2.42+52+2.62+ ...... is  n(n+1)22  when n is even.When n is odd the sum is -
  • 3n(n+1)2
  • 8n3+6n2+n3
  • n(n+1)24
  • [n(n+1)4]2
Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series 12+2.22+32+2.42+52+2.62+..... If B2A=100λ, then λ is equal to
  • 464
  • 496
  • 232
  • 248
If z22z+4=0 then the value of (z2+2z)2+(z24+4z2)2+(z38+8z3)2+........+(z24224+224Z24)2 is equal to.
  • 24
  • 32
  • 48
  • None of these
The odd natural numbers have been divided in groups as (1,3);(5,7,9,11);(13,15,17,19,21,23);..... Then the sum of numbers in the 10th group is
  • 4000
  • 4003
  • 4007
  • 4008
If 9@ 3 = 12, 15 @ 4 = 22, 16 @ 14 = 4, then what is the value of 6 @ 2 = ?
  • 26
  • 1
  • 30
  • 8
 5 2 7
 ? 3 1
 4 5 2
 -15 7 13
Select the missing number from the given alternatives.
  • 1
  • 5
  • 9
  • 7
Select the missing number from the given alternatives.
34214
65444
527?
  • 58
  • 14
  • 49
  • 4
If 12\times 16 = 188 and 14\times 18 = 248, then find the value of 16\times 20 = ?
  • 320
  • 360
  • 316
  • 318
Select the missing number from the given alternatives.
908224_58dcb79bac6e47e4a5a056e98ecf5ebf.png
  • 110
  • 115
  • 121
  • 54
If 28\div 11 = 8, 39\div 21 = 7, 45\div 27 = 4, then 95\div 25 = ?
  • 11
  • 9
  • 16
  • 5
In a row of girls, Mridula is 18^{th} from the right and Sanjana is 18^{th} from the left. If both of them interchange their position, Sanjana becomes 25^{th} from the left, how many girls are there in the row?
  • 40
  • 41
  • 42
  • 35
Choose the correct answer from the alternatives given :
The sum of \dfrac{1}{\sqrt 2 + 1} \, + \, \dfrac{1}{\sqrt 3 + \sqrt 2} \, + \, \dfrac{1}{\sqrt 4 + \sqrt 3} \, + \, ..... \, + \dfrac{1}{\sqrt {100} + \sqrt {99}} is
  • 9
  • 10
  • 11
  • None of these
Choose the correct answer alternatives given.
Select the missing number from the given alternatives.

908756_fd63ade1fdca4c419eb6d7cc3bd855da.png
  • 18
  • 21
  • 5
  • 17
If 1^{3} + 2^{3} + .... + 10^{3} = 3025, then the value of 2^{3} + 4^{3} + ..... + 20^{3} is
  • 7590
  • 5060
  • 24200
  • 12100
In our number system the base is ten. If the base were changed to four you would count as follows: 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30,.... The twentieth number would be:
  • 20
  • 38
  • 44
  • 104
  • 110
The value of the product 
{ 6 }^{ \frac { 1 }{ 2 }  }\times { 6 }^{ \frac { 1 }{ 4 } }\times { 6 }^{ \frac { 1 }{ 8 } }\times { 6 }^{ \frac { 1 }{ 16 }  }\times .. up to infinite terms is
  • 6
  • 36
  • 216
  • 512
If a and b are two unequal positive numbers, the:
  • \frac{2ab}{a+b}>\sqrt{ab}>\frac{a+b}{2}
  • \sqrt{ab}>\frac{2ab}{a+b}>\frac{a+b}{2}
  • \frac{2ab}{a+b}>\frac{a+b}{2}>\sqrt{ab}
  • \frac{a+b}{2}>\frac{2ab}{a+b}>\sqrt{ab}
  • \frac{a+b}{2}>\sqrt{ab}>\frac{2ab}{a+b}
If y = x+x^2+x^3+... up to infinite terms, where x<1, then which one of the following is correct?
  • x=\dfrac { y }{ 1+y }
  • x=\dfrac { y }{ 1-y }
  • x=\dfrac {1+ y }{ y }
  • x=\dfrac { 1-y }{ y }
If 1.3 + 2.3^2 + 3.3^3 +...+ n.3^n = \dfrac { (2n-1)3^ a+b }{ 4 } then a and b are respectively 
  • n,2
  • n,3
  • n +1,2
  • n + 1,3
The value of \dfrac { 1 }{ \log _{ 3 }{ e }  } +\dfrac { 1 }{ \log _{ 3 }{ e^2 }  } +\dfrac { 1 }{ \log _{ 3 }{ e^4 }  } +...  up to infinite terms is
  • \log _{ e }{ 9 }
  • 0
  • 1
  • \log _{ e }{ 3 }
If x =1-y+{ y }^{ 2 }-{ y }^{ 3 }+... upto infinite terms, where |y| < 1, then which one of the following is correct?
  • x =\frac { 1 }{ 1+y }
  • x =\frac { 1 }{ 1-y }
  • x = \frac { y }{ 1+y }
  • x=\frac { y }{ 1-y }
\displaystyle \sum _{ k=1 }^{ 6 }{ \left[ sin\frac { 2k\pi  }{ 7 } -i\quad cos\quad \frac { 2k\pi  }{ 7 }  \right]  } =

  • -1
  • 0
  • -i
  • i
Arrange these numbers in ascending order. 
756, 567, 657, 676 
  • 657, 567, 756, 676
  • 567, 657, 676, 756
  • 756, 676, 657, 567
  • 676, 756, 567, 657
For some natural N , the number of positive integral x satisfying the equation, 
1!+2!+3!+......+(x)!=(N)^2 is :
  • None
  • One
  • Two
  • Infinite
State True or False.
1 \, + \, \dfrac{1}{5} \, + \, \dfrac{3}{5^2} \, + \, \dfrac{5}{5^3} \, + \, ..... \infty = \dfrac {13}{8}
  • True
  • False
State true or false.
199.1 + 197.3 + 195.5 +.....3.197 + 1.397 = 666700
  • True
  • False
The sum of the given series 1+3+5+7+9+......+53 is 729.
  • True
  • False
If S_n=\sum\limits_{r=1}^n \dfrac{2r+1}{r^4+2r^3+r^2} then S_{20} =
  • \dfrac{220}{221}
  • \dfrac{420}{441}
  • \dfrac{439}{221}
  • \dfrac{440}{441}
The sum to 50 terms of the series \dfrac {1}{2} + \dfrac {3}{4} + \dfrac {7}{8} + \dfrac {15}{16} + .... is equal to
  • 2^{50} - 51
  • 1 - 2^{-50}
  • 2^{-50}+49
  • 2^{50} - 1
\sum\limits_{r=1}^{50}\Big[ \dfrac{1}{49+r}-\dfrac{1}{2r(2r-1)}\Big]=
  • \dfrac{1}{50}
  • \dfrac{1}{99}
  • \dfrac{1}{100}
  • \dfrac{1}{101}
The value of x satisfying the equation \dfrac{5050-\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+......+\dfrac{5049}{5050}\right)}{1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{5050}}=\dfrac{x}{5050} is 
  • 1
  • 5049
  • 5050
  • 5051
If 1 + {x^2} = \sqrt {3}x , then \displaystyle \prod\limits_{n = 1}^{24} {\left( {x^n} + \dfrac {1} {x^n} \right)} is equal to 
  • 48
  • -48
  • \pm 48\left( {\omega - {\omega ^2}} \right)
  • none of these
If \left| a \right| < 1 and \left| b \right| < 1 then s = 1 + \left( {1 + a} \right)b + \left( {1 + a + {a^2}} \right){b^2} + \left( {1 + a + {a^2} + {a^3}} \right){b^3} + ...is - .
  • {\dfrac 1 {\left( {1 - b} \right)\left( {1 - ab} \right)}}
  • {\dfrac 1 {\left( {1 + b} \right)\left( {1 - ab} \right)}}
  • {\dfrac 1 {\left( {1 - b} \right)\left( {1 + ab} \right)}}
  • {\dfrac 1 {\left( {1 + b} \right)\left( {1 + ab} \right)}}
The sum of the series \dfrac{1}{(1\times 2)}+\dfrac{1}{(2\times 3)}+\dfrac{1}{(3\times 4)}+.......+\dfrac{1}{(100\times 101)} is equal to

  • \dfrac{200}{101}
  • \dfrac{100}{101}
  • \dfrac{50}{101}
  • \dfrac{25}{101}
If \left| a \right| < 1 and \left| b \right| < 1 then \eqalign{  &   \cr   & S = 1 + \left( {1 + a} \right)b + \left( {1 + a + {a^2} } \right){b^2} + ...} =
  • {1 \over {\left( {1 - b} \right)\left( {1 - ab} \right)}}
  • {1 \over {\left( {1 + b} \right)\left( {1 - ab} \right)}}
  • {1 \over {\left( {1 - b} \right)\left( {1 + ab} \right)}}
  • {1 \over {\left( {1 + b} \right)\left( {1 + ab} \right)}}
If (1+3+5+....+p)+(1+3+5+....+q)=(1+3+5+.....+r), where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of p+q+r, (where P>6 ) is :
  • 12
  • 21
  • 27
  • 24
Let T_{n}=\displaystyle  \sum _{ r=1 }^{ n }{ \dfrac { n }{ { r }^{ 2 }-2r.n+2{ n }^{ 2 } } ,{ S }_{ n }=\displaystyle  \sum _{ r=0 }^{ n-1 }{ \dfrac { n }{ { r }^{ 2 }-2r.n+{ 2n }^{ 2 } }  }  }, then
  • T_{n} > S_{n} \forall n \epsilon N
  • T_{n} > \dfrac{\pi}{4}
  • S_{n} < \dfrac{\pi}{4}
  • \displaystyle \lim _{ n-\infty }{ { S }_{ n }=\dfrac { \pi }{ 4 } }
If S_{n}=\dfrac {3}{2}+\dfrac {33}{2^{2}}+\dfrac {333}{2^{2}}+.... upto n terms =\dfrac {a^{n+1}+b^{b-n}-c}{d} (where a,b,c,d \epsilon\ N), then ?

  • a+b+c+d=28
  • b+d=a+c
  • a-c=b+d
  • d-c=a-b
Sum of the series 1+2.2+3.2^{2}+4.2^{3}+..+100.2^{99} is
  • 100.2^{100}+1
  • 99.2^{100}+1
  • 99.2^{100}-1
  • 100.2^{100}-1
The value of sum \sum _{ n=1 }^{n=\infty  }{ \frac { 2 }{ { 3 }^{ n } }  is\ equal\ to: }
  • 1
  • 3
  • 15/4
  • 7/3
Pam likes the numbers 1689 and 6891. Knowing this, which pair of numbers will she like among the ones below?
  • 1981 and 1891
  • 19 and 91
  • 190 and 160
  • 1198911 and 1168611
Let {S_n} = \frac{3}{{{1^2}}} + \frac{5}{{{1^2} + {2^3}}} + \frac{7}{{{1^2} + {2^3} + {3^3}}} + \frac{9}{{{1^2} + {2^3} + {3^3} + {4^3}}} + .......{\text{ up to n terms, then }}\mathop {\lim }\limits_{n \to \infty } {S_n}{\text{ }} is equal to  
  • 2
  • 3
  • 6
  • 1
A = (2 + 1)({2^2} + 1)({2^4} + 1).....\left( {{2^{2016}} + 1} \right). The value of {\left( {A + 1} \right)^{\frac{1}{{2016}}}} is
  • 4
  • 2016
  • ^{{2^{4032}}}
  • 2
Let {n}^{th} term of sequence 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,..... is given by {t}_{n} , then ?
  • {t}_{100}=14
  • {t}_{200}=20
  • {t}_{300}=24
  • {t}_{400}=28

given relation is  \frac{1}{n+1} + \frac{1}{n+2}+.....+ \frac{1}{2n} > \frac{13}{24}< for all natural numbers n>1

  • True
  • False
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers