CBSE Questions for Class 11 Engineering Maths Straight Lines Quiz 5 - MCQExams.com

If $$M (x, y)$$ is equidistant from $$A (a + b, b - a)$$ and $$B (a - b, a + b)$$, then 
  • $$bx + ay =0$$
  • $$bx - ay = 0$$
  • $$ax + by = 0$$
  • $$ax - by = 0$$
$$(3, 1), (-3, 2)$$ and $$\displaystyle (0,2-\sqrt{3})$$ are the vertices of __________ triangle of area ___________.
  • an isosceles, $$81$$ sq. units
  • a scalene, $$\cfrac {-3+6\sqrt{3}}{2}$$ sq. units
  • an equilateral, $$\displaystyle 9\sqrt{3}$$ sq. units
  • a right angled, $$81$$ sq. units
The angle between the lines $$y -x + 5 = 0$$ and $$\sqrt 3x - y + 7= 0$$ is/are
  • $$15^o$$
  • $$60^o$$
  • $$165^o$$
  • $$75^o$$
The points $$A(a, b + c), B(b, c + a)$$ and $$C(c, a + b)$$ are:
  • collinear
  • doesn't lie in the same plane
  • doesn't lie on the same line
  • nothing can be said
Find the area of the triangle whose vertices are $$(a, b + c), (a, b - c)$$ and $$(-a, c)$$.
  • $$2ac$$
  • $$2bc$$
  • $$b(a + c)$$
  • $$c (a - b)$$
The  triangle with vertices A(4, 4), B(-2, -6) and C(4, -1) is shown in the diagram. The area of $$\Delta$$ ABC is _______
315256_5a2397c27ccb4a7381cb4eb9f6626fa4.png
  • 5 sq. units
  • 12 sq. units
  • 15 sq. units
  • 20 sq. units
$$\triangle OAB$$ is an equilateral triangle where $$\displaystyle O\equiv \left( 0,0 \right) ,A\equiv \left( 1,\frac { 1 }{ \sqrt {3}}\right) $$. The co-ordinates of point $$B$$ can be :-
  • $$\displaystyle \left( \frac { 2 }{ \sqrt { 3 } } ,0 \right) $$
  • $$\displaystyle \left( 0,-\frac { 1 }{ \sqrt { 3 } } \right) $$
  • $$\displaystyle \left( 0,\frac { 1 }{ \sqrt { 3 } } \right) $$
  • $$\displaystyle \left( 1,-\frac { 1 }{ \sqrt { 3 } } \right) $$
Supriya is standing in the Sun close to a lamp post. Supriya is 5 feet  tall and her shadow is 2 feet long. The shadow of the lamp post is  8 feet long. How tall is the lamp post ?
315415.png
  • 25ft
  • 18ft
  • 16ft
  • 14ft
Three points A, B and C have coordinates $$(a, b + c), \ (b, c + a)$$ and $$(c, a + b)$$, respectively. The area of the triangle ABC will be:
  • $$\displaystyle a^{2}+b^{2}+c^{2}$$
  • $$\displaystyle \dfrac{a^{2}+b^{2}+c^{2}}2$$
  • $$\displaystyle \dfrac{a^{2}+b^{2}+c^{2}}4$$
  • $$0$$
A special fully automatic car is designed by the Indian scientist in the Hindustan Automobiles Ltd The car follows only the following instructions
 $$\displaystyle G_{1}$$(x) : The car shall move forward to x meters
$$\displaystyle G_{2}$$(x) : The car shall turn in right direction and move x meters
$$\displaystyle G_{3}$$(x) : The car shall turn in left direction and move x meters
$$\displaystyle G_{4}$$(x) : The car shall move left y meetrs

The car is given instruction $$\displaystyle G_{1}$$(100), $$\displaystyle G_{3}$$(50), $$\displaystyle G_{4}$$(10). Assume that car was initially at origin Find the shortest distance of the car from the original position
  • $$\displaystyle 10\sqrt{105}$$
  • $$\displaystyle 10\sqrt{106}$$
  • $$\displaystyle 8\sqrt{106}$$
  • $$\displaystyle 5\sqrt{106}$$
If the coordinates of two points A and B are $$(3, 4)$$ and $$(5, -2)$$, respectively, then the coordinates of any point P if $$PA = PB$$ and area of $$\displaystyle \Delta PAB=10$$ is
  • $$(7, 2)$$ or $$(1, 0)$$
  • $$(-7, 2)$$ or $$(3, 0)$$
  • $$(7, -2)$$ or $$(5, 0)$$
  • $$(7, -2)$$ or $$(-1, 0)$$
If the slope of a line passing through the point A(3, 2) be $$\displaystyle  \frac{3}{4} $$ then the points on the line which are 5 units away from A are
  • $$(5, 5), (-1, -1)$$
  • $$(7, 5), (-1, -1)$$
  • $$(5, 7), (-1, -1)$$
  • $$(7, 5), (1, 1)$$
Find a point on the x-axis which is equidistant from the points $$(7, 6)$$ and $$(-3, 4)$$
  • $$(3, 0)$$
  • $$(2, 0)$$
  • $$(-3, 0)$$
  • $$(4, 0)$$
If the co-ordinates of two points A and B are (3, 4) and (5, -2) respectively then the co-ordinates of any point P if PA = PB and area of $$\displaystyle \Delta PAB=10$$ is
  • (7, 2) or (1, 0)
  • (-7, 2) or (3, 0)
  • (7, -2) or (5, 0)
  • (7, -2) or (-1, 0)
Find the point P(x, y) if its distance from (-3, 0) & (3, 0) is 4 units individually
  • $$\displaystyle \left ( 0,\sqrt{5} \right )$$
  • $$\displaystyle \left ( 0,-\sqrt{5} \right )$$
  • $$\displaystyle \left ( 0,-\sqrt{7} \right )$$
  • $$(1, 0)$$
If $$A$$ & $$B$$ are the points $$(-3, 4)$$ and $$(2, 1)$$, then the coordinates of the point $$C$$ on produced $$AB$$ such that $$AC = 2BC$$ are
  • $$(2, 4)$$
  • $$(3, 7)$$
  • $$(7, -2)$$
  • $$\displaystyle \left ( \frac{1}{2},\frac{5}{2} \right )$$
AOBC is a rectangle whose three vertices are A (0, 3) O (O, 0) and B (5, 0). The length of its diagonal is 
  • 5
  • 3
  • 4
  • $$\displaystyle \sqrt{34}$$
The coordinates of $$A$$ for which area of triangle, whose vertices are $$A(a, 2a),\  B(-2, 6)$$ and $$C(3, 1)$$ is $$10$$ square units, are:
322219_bbb0d51619394b8eb9978b7422686677.png
  • $$(0,\:3)$$
  • $$(5,\:8)$$
  • $$(\displaystyle 3, \frac{8}{3})$$
  • None of these
Find a point on the X-axis which is equidistant from the points $$(5, 4)$$ and $$(-2, 3)$$.
  • $$(2,0)$$
  • $$(0,2)$$
  • $$(-2,0)$$
  • $$(0-2)$$
If A(2, 2), B(-4, -4), C(5, -8) are the vertices of any triangle the length of median passes through C will be
  • $$\displaystyle \sqrt{65}$$
  • $$\displaystyle \sqrt{117}$$
  • $$\displaystyle \sqrt{85}$$
  • $$\displaystyle \sqrt{113}$$
If the area of a triangle formed by the points (k, 2k) (-2, 6) and (3, 1) is 20 square units. Find the value of k.
  • $$5$$
  • $$4$$
  • $$\displaystyle \frac{3}{5}$$
  • $$\displaystyle \frac{2}{3}$$
The distance between $$(x+y, x-y), (x-y, x+y)$$ is 
  • $$0$$
  • $$\sqrt2$$ xy
  • $$2\sqrt 2$$y
  • $$2$$ xy
A(1, 1) and B(2, -3) are two points and D is a point on AB produced such that AD = 3 AB Then the co-ordinates of D is
  • (4, 11)
  • (4, -11)
  • (-2, 5)
  • (-4, -11)
In the diagram PQR is an isosceles triangle and QR = 5 units
The coordinates of Q are
327708.bmp
  • (1, 5)
  • (3, 4)
  • (2, 4)
  • (1, 4)
Value of a when the distance between the points $$(3, a)$$ and $$(4, 1)$$ is $$\displaystyle \sqrt{10}$$ is
  • $$4\ or -2$$
  • $$-2\ or\ 4$$
  • $$6\ or\ 2$$
  • None
Do the points $$(-2, 5), (3, -4)$$ and $$(7, 10)$$ represent  the vertices of a right triangle?
  • Yes
  • No
  • Cannot be determined
  • None
If the distance between the points (a, 2) and (3, 4) be 8 then a =
  • $$\displaystyle 2+3\sqrt{15}$$
  • $$\displaystyle 2-3\sqrt{15}$$
  • $$\displaystyle 2\pm 3\sqrt{15}$$
  • $$\displaystyle 3\pm 2\sqrt{15}$$
If the area of a triangle is $$68 $$ sq. units and the vertices are $$(6, 7), (-4, 1)$$ and $$(a, -9) $$ then the value of $$a$$ is 
  • 1
  • 2
  • 3
  • 4
The value of k when the distance between the points $$(3,k)$$ and $$(4,1)$$ is $$ \displaystyle  \sqrt{10}  $$ is 
  • $$3 or 4$$
  • $$-4 or -2$$
  • $$-4 or 2$$
  • $$4 o r-2$$
If P is (-3, 4) and My Mx (P) shows the reflection ofthe point P in the x-axis and then the reflection of the image in the y-axis, then $$M_y M_x (P) $$ is
  • (3,4)
  • (-3,-4)
  • (-3,4)
  • (3,-4)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers