Explanation
There are total of $$n$$ brackets. The term $$x^{n-2}$$ will be formed when integers are chosen from any two brackets and $$x$$ is chosen from all the other brackets and multiplied.
Thus, the Coefficient of $$x^{n-2}$$ is
$$ C= (1\times2+1\times3+...+1\times n)+(2\times3+2\times4+..+2\times n)+...+((n-1)\times n)$$
$$ = \left(\dfrac {(n)(n+1)}{2}-1\right)+2\left(\dfrac {(n)(n+1)}{2}-1-2\right)+...+(n-1)\left(\dfrac {(n)(n+1)}{2}-(1+2+3+..+(n-1))\right) $$
$$ = \left\{(1+2+3+...+(n-1))(\dfrac {(n)(n+1)}{2})\right\} - \left\{ 1+2(1+2)+3(1+2+3)+...+(n-1)(1+...+n-1)\right\}$$
$$ = \left\{(\dfrac {(n-1)(n)}{2})(\dfrac {(n)(n+1)}{2})\right\} - \left\{\sum_{1}^{n-1} k(\dfrac {(k)(k+1)}{2})\right\}$$
$$= \left\{ \dfrac {n^{2}(n^{2}-1)}{4}\right\} - \left\{ \sum_{1}^{n-1} \dfrac {k^{3}+k^{2}}{2} \right\} $$
$$ = \left\{ \dfrac {n^{2}(n^{2}-1)}{4}\right\} - \dfrac {1}{2}\left\{ (\dfrac {(n-1)(n)}{2})^{2} + \dfrac {(n-1)n(2n-1)}{6} \right\} $$ $$ = \dfrac {n(n-1)}{4} \left\{ {n(n+1)} - \dfrac {n(n-1)}{2} - \dfrac {2n-1}{3} \right\} $$
$$ = \dfrac {n(n-1)}{4}\left\{ \dfrac {n(n+3)}{2} -\dfrac {2n-1}{3} \right\} $$
$$ = \dfrac {n(n-1)}{4}\left\{ \dfrac {3n^{2}+9n-4n+2}{6} \right\} $$
$$ = \dfrac {n(n-1)}{4}\left\{ \dfrac {(3n+2)(n+1)}{6} \right\} $$ $$ \therefore $$ Option $$B$$ is correct.
Put $$y={ 3 }^{ \log _{ 3 }{ \sqrt { { 9 }^{ \left| x-2 \right| } } } }$$ $$\Rightarrow$$ $$\log _{ 3 }{ y } =\log _{ 3 }{ \sqrt { { 9 }^{ \left| x-2 \right| } } } $$ $$\Rightarrow \quad y=\sqrt { { 9 }^{ \left| x-2 \right| } } ={ 3 }^{ \left| x-2 \right| }$$ Now, put $$z={ 7 }^{ (\tfrac 15)\log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] } }$$ $$\log _{ 7 }{ z } =\cfrac { 1 }{ 5 } \log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] } $$ $$={ \left( \log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] } \right) }^{ \tfrac 15 }$$ $$\Rightarrow z={ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] }^{ \tfrac 15 }$$ Now, $$E={ \left( y+z \right) }^{ 7 }$$ and 6th term is given by $${ t }_{ 6 }={ _{ }^{ 7 }{ C } }_{ 5 }{ y }^{ 7-5 }{ z }^{ 5 }=21{ \left( { 3 }^{ \left| x-2 \right| } \right) }^{ 2 }\left\{ (4).{ 3 }^{ \left| x-2 \right| }-9 \right\} $$ $$\Rightarrow 567=21{ \left( { 3 }^{ 2\left| x-2 \right| } \right) }\left\{ (4).{ 3 }^{ \left| x-2 \right| }-9 \right\} $$ $$\Rightarrow 27=\left[ (4){ 3 }^{ 3\left| x-2 \right| } \right] -\left[ (9)({ 3 }^{ 2\left| x-2 \right| }) \right] $$ $$\Rightarrow \quad 27=(4){ 3 }^{ 3\left| x-2 \right| }-(9){ 3 }^{ 2\left| x-2 \right| }$$ $$\Rightarrow \quad 4{ u }^{ 3 }-9{ u }^{ 2 }-27=0\quad ;\quad u={ 3 }^{ \left| x-2 \right| }$$ note that $$u=3$$ satisfies this equation $${ 3 }^{ \left| x-2 \right| }=3\quad \Rightarrow \left| x-2 \right| =1\quad \Rightarrow \quad x-2=\pm 1\quad $$ $$x=2\pm1=3\quad or\quad 1$$.
$${ (1+x) }^{ n }=^{ n }C_{ 0 }+^{ n }C_{ 1 }x+^{ n }C_{ 2 }{ x }^{ 2 }.........^{ n }C_{ n }{ x }^{ n }\\ \Rightarrow ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }.........^{ n }C_{ n }={ 2 }^{ n }$$
For the given expansion $${ (1+x) }^{ 59 }$$ let sum of last $$30$$ coefficients be $$S$$
$$S=^{ 59 }C_{ 30 }+^{ 59 }C_{ 31 }+^{ 59 }C_{ 32 }..........^{ 59 }C_{ 59 }$$ ....(i)
As $$^{ n }C_{ r }=^{ n }C_{ n-r }$$
$$\Rightarrow S=^{ 59 }C_{ 29 }+^{ 59 }C_{ 28 }+^{ 59 }C_{ 27 }..........^{ 59 }C_{ 0 }$$ ....(ii)
Adding (i) and (ii), we get
$$\Rightarrow 2S=^{ 59 }C_{ 0 }+^{ 59 }C_{ 1 }+^{ 59 }C_{ 2 }........^{ 59 }C_{ 59 }\\ \Rightarrow 2S={ 2 }^{ 59 }\\ \Rightarrow S={ 2 }^{ 58 }$$
So, option B is correct.
Consider the given expression.
$$\Rightarrow {{\left( {{2}^{x}}+\dfrac{1}{{{4}^{x}}} \right)}^{n}}$$
Given:
$$\dfrac{{{t}_{3}}}{{{t}_{2}}}=7$$
By binomial expansion, we know that
$$ {{t}_{3}}={}^{n}{{C}_{2}}{{\left( {{2}^{x}} \right)}^{n-2}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{2}} $$
$$ {{t}_{2}}={}^{n}{{C}_{1}}{{\left( {{2}^{x}} \right)}^{n-1}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{1}} $$
Again, we have
$$ {}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}=36 $$
$$ {}^{n+1}{{C}_{2}}=36 $$
$$ \dfrac{\left( n+1 \right)!}{2!\left( n+1-2 \right)!}=36 $$
$$ \dfrac{n\left( n+1 \right)}{2}=36 $$
$$ {{n}^{2}}+n-72=0 $$
$$ n=8,-9 $$
Therefore,
$$n=8$$
Now,
$$ \dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{}^{n}{{C}_{2}}{{\left( {{2}^{x}} \right)}^{n-2}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{2}}}{{}^{n}{{C}_{1}}{{\left( {{2}^{x}} \right)}^{n-1}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{1}}} $$
$$ \dfrac{{}^{8}{{C}_{2}}{{\left( {{2}^{x}} \right)}^{8-2}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{2}}}{{}^{8}{{C}_{1}}{{\left( {{2}^{x}} \right)}^{8-1}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{1}}}=7 $$
$$ \dfrac{28{{\left( {{2}^{x}} \right)}^{6}}{{\left( \dfrac{1}{{{\left( {{2}^{2}} \right)}^{x}}} \right)}^{2}}}{8{{\left( {{2}^{x}} \right)}^{7}}{{\left( \dfrac{1}{{{\left( {{2}^{2}} \right)}^{x}}} \right)}^{1}}}=7 $$
$$ \dfrac{7\times {{2}^{6x-4x}}}{2\times {{2}^{7x-2x}}}=7 $$
$$ {{2}^{2x-5x}}=2 $$
$$ -3x=1 $$
$$ x=-\dfrac{1}{3} $$
Hence, this is the required result.
Please disable the adBlock and continue. Thank you.