Explanation
There are total of n brackets. The term x^{n-2} will be formed when integers are chosen from any two brackets and x is chosen from all the other brackets and multiplied.
Thus, the Coefficient of x^{n-2} is
C= (1\times2+1\times3+...+1\times n)+(2\times3+2\times4+..+2\times n)+...+((n-1)\times n)
= \left(\dfrac {(n)(n+1)}{2}-1\right)+2\left(\dfrac {(n)(n+1)}{2}-1-2\right)+...+(n-1)\left(\dfrac {(n)(n+1)}{2}-(1+2+3+..+(n-1))\right)
= \left\{(1+2+3+...+(n-1))(\dfrac {(n)(n+1)}{2})\right\} - \left\{ 1+2(1+2)+3(1+2+3)+...+(n-1)(1+...+n-1)\right\}
= \left\{(\dfrac {(n-1)(n)}{2})(\dfrac {(n)(n+1)}{2})\right\} - \left\{\sum_{1}^{n-1} k(\dfrac {(k)(k+1)}{2})\right\}
= \left\{ \dfrac {n^{2}(n^{2}-1)}{4}\right\} - \left\{ \sum_{1}^{n-1} \dfrac {k^{3}+k^{2}}{2} \right\}
= \left\{ \dfrac {n^{2}(n^{2}-1)}{4}\right\} - \dfrac {1}{2}\left\{ (\dfrac {(n-1)(n)}{2})^{2} + \dfrac {(n-1)n(2n-1)}{6} \right\} = \dfrac {n(n-1)}{4} \left\{ {n(n+1)} - \dfrac {n(n-1)}{2} - \dfrac {2n-1}{3} \right\}
= \dfrac {n(n-1)}{4}\left\{ \dfrac {n(n+3)}{2} -\dfrac {2n-1}{3} \right\}
= \dfrac {n(n-1)}{4}\left\{ \dfrac {3n^{2}+9n-4n+2}{6} \right\}
= \dfrac {n(n-1)}{4}\left\{ \dfrac {(3n+2)(n+1)}{6} \right\} \therefore Option B is correct.
Put y={ 3 }^{ \log _{ 3 }{ \sqrt { { 9 }^{ \left| x-2 \right| } } } } \Rightarrow \log _{ 3 }{ y } =\log _{ 3 }{ \sqrt { { 9 }^{ \left| x-2 \right| } } } \Rightarrow \quad y=\sqrt { { 9 }^{ \left| x-2 \right| } } ={ 3 }^{ \left| x-2 \right| } Now, put z={ 7 }^{ (\tfrac 15)\log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] } } \log _{ 7 }{ z } =\cfrac { 1 }{ 5 } \log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] } ={ \left( \log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] } \right) }^{ \tfrac 15 } \Rightarrow z={ \left[ (4).{ 3 }^{ \left| x-2 \right| }-9 \right] }^{ \tfrac 15 } Now, E={ \left( y+z \right) }^{ 7 } and 6th term is given by { t }_{ 6 }={ _{ }^{ 7 }{ C } }_{ 5 }{ y }^{ 7-5 }{ z }^{ 5 }=21{ \left( { 3 }^{ \left| x-2 \right| } \right) }^{ 2 }\left\{ (4).{ 3 }^{ \left| x-2 \right| }-9 \right\} \Rightarrow 567=21{ \left( { 3 }^{ 2\left| x-2 \right| } \right) }\left\{ (4).{ 3 }^{ \left| x-2 \right| }-9 \right\} \Rightarrow 27=\left[ (4){ 3 }^{ 3\left| x-2 \right| } \right] -\left[ (9)({ 3 }^{ 2\left| x-2 \right| }) \right] \Rightarrow \quad 27=(4){ 3 }^{ 3\left| x-2 \right| }-(9){ 3 }^{ 2\left| x-2 \right| } \Rightarrow \quad 4{ u }^{ 3 }-9{ u }^{ 2 }-27=0\quad ;\quad u={ 3 }^{ \left| x-2 \right| } note that u=3 satisfies this equation { 3 }^{ \left| x-2 \right| }=3\quad \Rightarrow \left| x-2 \right| =1\quad \Rightarrow \quad x-2=\pm 1\quad x=2\pm1=3\quad or\quad 1.
{ (1+x) }^{ n }=^{ n }C_{ 0 }+^{ n }C_{ 1 }x+^{ n }C_{ 2 }{ x }^{ 2 }.........^{ n }C_{ n }{ x }^{ n }\\ \Rightarrow ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }.........^{ n }C_{ n }={ 2 }^{ n }
For the given expansion { (1+x) }^{ 59 } let sum of last 30 coefficients be S
S=^{ 59 }C_{ 30 }+^{ 59 }C_{ 31 }+^{ 59 }C_{ 32 }..........^{ 59 }C_{ 59 } ....(i)
As ^{ n }C_{ r }=^{ n }C_{ n-r }
\Rightarrow S=^{ 59 }C_{ 29 }+^{ 59 }C_{ 28 }+^{ 59 }C_{ 27 }..........^{ 59 }C_{ 0 } ....(ii)
Adding (i) and (ii), we get
\Rightarrow 2S=^{ 59 }C_{ 0 }+^{ 59 }C_{ 1 }+^{ 59 }C_{ 2 }........^{ 59 }C_{ 59 }\\ \Rightarrow 2S={ 2 }^{ 59 }\\ \Rightarrow S={ 2 }^{ 58 }
So, option B is correct.
Consider the given expression.
\Rightarrow {{\left( {{2}^{x}}+\dfrac{1}{{{4}^{x}}} \right)}^{n}}
Given:
\dfrac{{{t}_{3}}}{{{t}_{2}}}=7
By binomial expansion, we know that
{{t}_{3}}={}^{n}{{C}_{2}}{{\left( {{2}^{x}} \right)}^{n-2}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{2}}
{{t}_{2}}={}^{n}{{C}_{1}}{{\left( {{2}^{x}} \right)}^{n-1}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{1}}
Again, we have
{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}=36
{}^{n+1}{{C}_{2}}=36
\dfrac{\left( n+1 \right)!}{2!\left( n+1-2 \right)!}=36
\dfrac{n\left( n+1 \right)}{2}=36
{{n}^{2}}+n-72=0
n=8,-9
Therefore,
n=8
Now,
\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{}^{n}{{C}_{2}}{{\left( {{2}^{x}} \right)}^{n-2}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{2}}}{{}^{n}{{C}_{1}}{{\left( {{2}^{x}} \right)}^{n-1}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{1}}}
\dfrac{{}^{8}{{C}_{2}}{{\left( {{2}^{x}} \right)}^{8-2}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{2}}}{{}^{8}{{C}_{1}}{{\left( {{2}^{x}} \right)}^{8-1}}{{\left( \dfrac{1}{{{4}^{x}}} \right)}^{1}}}=7
\dfrac{28{{\left( {{2}^{x}} \right)}^{6}}{{\left( \dfrac{1}{{{\left( {{2}^{2}} \right)}^{x}}} \right)}^{2}}}{8{{\left( {{2}^{x}} \right)}^{7}}{{\left( \dfrac{1}{{{\left( {{2}^{2}} \right)}^{x}}} \right)}^{1}}}=7
\dfrac{7\times {{2}^{6x-4x}}}{2\times {{2}^{7x-2x}}}=7
{{2}^{2x-5x}}=2
-3x=1
x=-\dfrac{1}{3}
Hence, this is the required result.
Please disable the adBlock and continue. Thank you.