CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 11 - MCQExams.com

The value of $$x$$ in the expression $${ \left( x+{ x }^{ \log _{ 10 }{ x }  } \right)  }^{ 5 }$$, if the third term in the expansion is $$10,00,000,$$ is
  • $${ 10 }^{ -1 }$$
  • $${ 10 }^{ 1 }$$
  • $${ 10 }^{ -5/2 }$$
  • $${ 10 }^{ 5/2 }$$
The total number of terms which are dependent on the value of $$x$$ in the expansion of $$\left(x^2 - 2 + \displaystyle\frac{1}{x^2}\right)^n$$ is equal to   
  • $$2n + 1$$
  • $$2n$$
  • $$n$$
  • $$n + 1$$
If $$c_{0},c_{1},c_{2}\cdots c_{n}$$ are binomial coefficients in $$\left ( 1+x \right )^{n}$$, then the value of $$c_{1} + c_{5} + c_{9}+c_{13}+\cdots $$ equals
  • $$\displaystyle 2^{n-1} + 2^{\frac{n}{2}}\sin \left ( \frac{n\pi }{4} \right )$$
  • $$\displaystyle 2^{n-1} + 2^{\frac{n}{2}}\cos \left ( \frac{n\pi }{4} \right )$$
  • $$\displaystyle \frac{1}{2}\left ( 2^{n-1}+2^\tfrac{n}{2}\:\sin \frac{n\pi }{4} \right )$$
  • $$\displaystyle \frac{1}{2}\left ( 2^{n-1}-2^\tfrac{n}{2}\:\sin \frac{n\pi }{4} \right )$$
The expresion
$$^{45}C_{8}$$+$$\sum _{ k=1 }^{ 7 }{^{ 52-k} C_{ 7 }} $$+$$\sum _{ i=1 }^{ 5 }{^{ 57-i} C_{ 50-i }} $$
  • $$ ^{55}C_{7} $$
  • $$ ^{57}C_{8} $$
  • $$ ^{57}C_{7} $$
  • None of these
The coefficient of $$x^{n-2}$$ in the polynomial $$(x-1)(x-2)(x-3)....(x-n)$$ is 
  • $$\displaystyle \frac{n(n^{2}+2)(3n+1)}{24}$$
  • $$\displaystyle \frac{n(n^{2}-1)(3n+2)}{24}$$
  • $$\displaystyle \frac{n(n^{2}+1)(3n+4)}{24}$$
  • None of these
The value of the expression $$\displaystyle \frac{1 + 4\:.\:343 + 7\:.\:4 + 2\:.\:3\:.\:49 + 7\:.\:343}{16 + 2^6\:.\:3^1 + 2^{5}\:.\:3^{3} + 2^{6}\: . \: 3^{3} + 2^{4}\:.\:3^{4}}$$ equal
  • $$\displaystyle 1$$
  • $$\displaystyle 2$$
  • $$\displaystyle 4$$
  • $$\displaystyle 3$$
The value of $$ \displaystyle B=\sum_{0\leq r\leq s\leq n}^{} $$ $$ \displaystyle \sum \left ( C_{r}-C_{s} \right )^{2} $$ is
  • $$ \displaystyle \left ( n+1 \right )^{n}-2^{2n} $$
  • $$ \displaystyle \left ( n+1 \right )\displaystyle ^{2n}C_{n}-2^{n} $$
  • $$ \displaystyle \left ( n+1 \right )\displaystyle ^{2n}C_{n}-2^{2n} $$
  • $$ \displaystyle 2^{2n}-2^{n} $$
If $$C_{0},C_{1},C_{2}....,C_{n}$$ denote the binomial coefficients in the expansion of $$\left ( 1+x \right )^{n}$$, then $$\cfrac{C1}{C0}+2\cfrac{C2}{C1}++3\cfrac{C3}{C2}+.....+n\cfrac{Cn}{Cn-1}$$ equals
  • $$\displaystyle \frac{n}{2}$$
  • $$\displaystyle \frac{n+1}{2}$$
  • $$\displaystyle \frac{n\left ( n-1 \right )}{2}$$
  • $$\displaystyle \frac{n\left ( n+1 \right )}{2}$$
If the fourth term of $${ \left( \sqrt { { x }^{ \left( \cfrac { 1 }{ 1+\log { x }  }  \right)  } } +\sqrt [ 12 ]{ x }  \right)  }^{ 6 }$$ is equal to 200 and $$x>1$$, then $$x$$ is equal to
  • $$10\sqrt { 2 } $$
  • $$10$$
  • $${ 10 }^{ 4 }$$
  • $$10/\sqrt { 2 } $$
The number of irrational terms in the expansion of $$(\sqrt[8]{5}+\sqrt[6]{2})^{100}$$ is
  • $$97$$
  • $$98$$
  • $$96$$
  • $$99$$
The value of the expression
$${ C }_{ 0 }^{ 2 }-{ C }_{ 1 }^{ 2 }+{ C }_{ 2 }^{ 2 }-......+{{ \left( -1 \right)  }^{ n }} \times {{ C }_{ n }^{ 2 }} $$ is
  • $$0$$, if $$n$$ is odd
  • $${ \left( -1 \right) }^{ n }$$, if $$n$$ is odd
  • $${ \left( -1 \right) }^{ n/2 }\  { _{ }^{ n }{ C } }_{ n/2 }$$, if $$n$$ is even
  • $${ \left( -1 \right) }^{ n-1 }\  { _{ }^{ n }{ C } }_{ n-1 }$$, if $$n$$ is even
Value of $$P=\sum _{ 0\le  }^{  }{ \sum _{ r<s\le n }^{  }{ { C }_{ r } } { C }_{ s } } $$ is
  • $${ 2 }^{ 2n }-\cfrac { 1 }{ 2 } ({ _{ }^{ 2n }{ C } }_{ n } )$$
  • $${ 2 }^{ 2n-1 }-\cfrac { 1 }{ 2 } ({ _{ }^{ 2n }{ C } }_{ n })$$
  • $${ 2 }^{ 2n }-\cfrac 12  ({ _{ }^{ 2n }{ C } }_{ n })$$
  • None of these
11th term in the expansion of
$${ \left( 3-\sqrt { \cfrac { 17 }{ 4 } +3\sqrt { 2 }  }  \right)  }^{ 20 }$$ is
  • an irrational number
  • a rational number
  • a positive integer
  • a negative integer
If $$n$$ is even, then value of the expression
$${ C }_{ 0 }-\cfrac { 1 }{ 2 } { C }_{ 1 }^{ 2 }+\cfrac { 1 }{ 3 } { C }_{ 2 }^{ 2 }-.....+\cfrac { { \left( -1 \right)  }^{ n } }{ n+1 } { C }_{ n }^{ 2 }$$
where
$${ C }_{ r }={ _{  }^{ n }{ C } }_{ r }$$ is
  • $$\cfrac { { \left( -1 \right) }^{ n }n! }{ (n+1){ (n/2)! }^{ 2 } } $$
  • $$\cfrac { { \left( -1 \right) }^{ n-1 }n! }{ (n+1){ (n/2)! }^{ 2 } } $$
  • $$\cfrac { { \left( -1 \right) } }{ (n+1){ (n/2)! }^{ 2 } } $$
  • $$\cfrac { { \left( -1 \right) }^{ n/2 }n! }{ (n+1){ (n/2)! }^{ 2 } } $$
Let
$$S={ C }_{ 1 }-\left( 1+\cfrac { 1 }{ 2 }  \right) { C }_{ 2 }+\left( 1+\cfrac { 1 }{ 2 } +\cfrac { 1 }{ 3 }  \right) { C }_{ 3 }-........+.{ \left( -1 \right)  }^{ n-1 }\left( 1+\cfrac { 1 }{ 2 } +....+\cfrac { 1 }{ n }  \right) { C }_{ n }$$
then
  • $$nS=1$$
  • $$\dfrac 1S$$ is an integer
  • $$\dfrac 1{{ S }^{ 2 }}$$ is an integer
  • $$S$$ is independent of $$n$$
values of $$x$$ for which the sixth term of the expansion of
$$E={ \left( { 3 }^{ \log _{ 3 }{ \sqrt { { 9 }^{ \left| x-2 \right|  } }  }  }+{ 7 }^{ (\tfrac 15)\log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right|  }-9 \right]  }  } \right)  }^{ 7 }$$ is $$567$$, are
  • $$1$$
  • $$2$$
  • $$3$$
  • none of these
Sum of the series
$$\sum _{ k=0 }^{ n }{ \sum _{ r=0 }^{ n-k }{ \begin{pmatrix} n \\ k \end{pmatrix} }  } \begin{pmatrix} n-k \\ r \end{pmatrix}$$ is
  • $${ 2 }^{ n }$$
  • $${ 3 }^{ n }$$
  • $$\sum _{ r=0 }^{ n }{ { (-1) }^{ r } } { C }_{ r }{ 4 }^{ r }$$
  • $$\sum _{ r=0 }^{ n }{ { _{ }^{ n }{ C } }_{ r } } { 2 }^{ r }$$
If in the expansion of $${ \left( { x }^{ 3 }-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ n }$$,
$$n\in N$$, sum of coefficient of $${ x }^{ 5 }$$ and $${ x }^{ 10 }$$ is $$0$$, then value of $$n$$ is
  • $$5$$
  • $$10$$
  • $$15$$
  • none of these
Value of
$$S={ _{  }^{ n }{ C } }_{ r }+3({ _{  }^{ n-1 }{ C } }_{ r })+5({ _{  }^{ n-2 }{ C } }_{ r })+...+ $$ upto $$\quad (n-r+1)\quad terms$$
  • $${ _{ }^{ n+2 }{ C } }_{ r+2 }$$
  • $${ _{ }^{ n+2 }{ C } }_{ r+2 }+{ _{ }^{ n+1 }{ C } }_{ r+2 }$$
  • $${ _{ }^{ n+2 }{ C } }_{ r+1 }$$
  • $${ _{ }^{ n+2 }{ C } }_{ r+2 }+{ _{ }^{ n+1 }{ C } }_{ r} $$
If $${ S }_{ n }=1+q+{ q }^{ 2 }+{ q }^{ 3 }+...+{ q }^{ n }$$ and $$\displaystyle { S' }_{ n }=1+\left( \frac { q+1 }{ 2 }  \right) +{ \left( \frac { q+1 }{ 2 }  \right)  }^{ 2 }+...+{ \left( \frac { q+1 }{ 2 }  \right)  }^{ n },q\neq 1$$ then $$^{ n+1 }{ { C }_{ 1 } }+^{ n+1 }{ { C }_{ 2 } }.{ S }_{ 1 }+^{ n+1 }{ { C }_{ 3 } }.{ S }_{ 2 }+...+^{ n+1 }{ { C }_{ n+1 } }.{ S }_{ n }=$$
  • $${ 2 }^{ n-1 }.{ S' }_{ n }$$
  • $${ 2 }^{ n }.{ S' }_{ n }$$
  • $${ 2 }^{ n+1 }.{ S' }_{ n }$$
  • None of these
The third term from the end in the expansion of $$\displaystyle\left(\frac{4x}{3y}-\frac{3y}{2x}\right)^9$$ is
  • $$\displaystyle^9C_7\frac{3^5}{2^3}\frac{y^5}{x^5}$$
  • $$\displaystyle^{-9}C_7\frac{3^5}{2^3}\frac{y^5}{x^5}$$
  • $$\displaystyle^9C_7\frac{3^5}{2^3}\frac{y^5}{x^3}$$
  • none of these
If the second ,third and fourth terms in the expansion of $${\left(x+y\right)}^{n}$$ are $$240,\,720$$ and $$1080$$ respectively, then the value of $$x,\,y,\,n$$ is
  • $$x=2,\,y=3,\,n=5$$
  • $$x=3,\,y=3,\,n=5$$
  • $$x=2,\,y=3,\,n=3$$
  • $$x=2,\,y=2,\,n=5$$

Maximum sum of the coefficients in the expansion of $$ (1 - x \sin \theta+ x^{2} )^{n} $$ is
  • $$1$$
  • $$2^{n}$$
  • $$3^{n}$$
  • $$0$$
$$C_{0}+3.C_{1}+3.^{2}\textrm{C}_{2}+...+3.^{n}C_{n}=5^{n}.$$
  • True
  • False
$$\left( _{  }^{ m }{ { C }_{ 0 }^{  } }+^{ m }{ { C }_{ 1 }^{  } }-^{ m }{ { C }_{ 2 }^{  } }-^{ m }{ { C }_{ 3 }^{  } } \right) +\left( ^{ m }{ { C }_{ 4 }^{  } }+^{ m }{ { C }_{ 5 }^{  } }-^{ m }{ { C }_{ 6 }^{  } }-^{ m }{ { C }_{ 7 }^{  } } \right) +...=0$$ if and only if for some positive integer $$k, m=$$
  • $$4k$$
  • $$4k+1$$
  • $$4k-1$$
  • $$4k+2$$
In the expansion of $$\left (5^{ \tfrac {1}{2}}+7^{\tfrac {1}{8}}\right )^{1024}$$, the number of integral terms is
  • $$128$$
  • $$129$$
  • $$130$$
  • $$131$$
If the expansion of $$\displaystyle\left(x^3+\frac{1}{x^2}\right)^n$$ contains a term independent of x, then the value of n can be
  • 18
  • 20
  • 24
  • 22
In the expansion of $${ \left( \dfrac { 3{ x }^{ 2 } }{ 5 } +\dfrac { 5 }{ 3{ x }^{ 2 } }  \right)  }^{ 10 }$$ mid term is
  • $$291$$
  • $$242$$
  • $$252$$
  • $$284$$
If $$(1+x)^{2n} =a_0+a_1x....+a_{2n}x^{2n}$$, then
  • $$a_1+a_2+a_4.....=\dfrac 12 (a_0+a_1+a_2.....)$$
  • $$a_{n+1}=a_n$$
  • $$a_{n-3}=a_{n+3}$$
  • $$a_{n-3}>a_{n+3}$$
If $$ac>b^2$$ then the sum of the coefficients in the expansion of $$(a\alpha ^2x^2+2b\alpha x+c)^n,(a,b,c,\alpha \in R, n\in N)$$ is
  • Positive if $$a>0$$.
  • Positive if $$c>0$$.
  • Negative if $$a<0, n $$ is odd.
  • Positive if $$c<0,n$$ is even.
If the sum of the coefficients in the expansion of $$(l^2x^2-2lx+1)^{50}$$ vanishes then $$l$$ is equal to:
  • $$-1$$
  • $$-2$$
  • $$1$$
  • $$2$$
Find the value(s) of k such that the term independent of x in $$\displaystyle\left(3x^2+\frac{k}{2x}\right)^6$$ is 135.
  • $$\pm2$$
  • $$\pm1$$
  • $$\pm3$$
  • $$\pm4$$
Find the coefficient of $$x^4$$ in the expansion of $$\left(2x^2+\frac{3}{x^3}\right)^7$$
  • $$^7C_22^53^3$$
  • $$^7C_22^53^2$$
  • $$^7C_23^52^2$$
  • $$^7C_32^53^2$$
The sum of the series $$\frac{1}{1\times 2}^{25}C_0 + \frac{1}{2\times 3}^{23}C_1+\frac{1}{3\times 4}^{25}C_2+...... + \frac{1}{26\times 27}^{25}C_{25}$$
  • $$\dfrac{2^{27}-1}{26\times 27}$$
  • $$\dfrac{2^{27}-28}{26\times 27}$$
  • $$\dfrac{1}{2}\left(\frac{2^{26}+1}{26\times 27}\right)$$
  • $$\dfrac{2^{26}-1}{52}$$
The number of rational terms in the expansion of $$\left(x^{\displaystyle\frac{1}{5}}+y^{\displaystyle\frac{1}{10}}\right)^{45}$$ is
  • 5
  • 6
  • 4
  • 7
The value of $$x$$ in the expression $${ \left( x+{ x }^{ \log _{ 10 }{ x }  } \right)  }^{ 5 }$$, if the third term in the expansion is $$1,000,000$$, is
  • $$10,{ 10 }^{ { -3 }/{ 2 } }$$
  • $$100$$ or $${ 10 }^{ { -3 }/{ 2 } }$$
  • $$10$$ or $${ 10 }^{ { -5 }/{ 2 } }$$
  • None of these
Sum of the last $$30$$ coefficients in the expansion of $${ \left( 1+x \right)  }^{ 59 }$$, when expanded in ascending power of $$x$$ is
  • $${ 2 }^{ 59 }$$
  • $${ 2 }^{ 58 }$$
  • $${ 2 }^{ 30 }$$
  • $${ 2 }^{ 29 }$$
If there is a term containing $$x^{2r}$$ in $$\left( x + \dfrac{1}{x^2} \right )^{n - 3}$$, then
  • n - 2r is a positive integral multiple of 3.
  • n - 2r is even
  • n - 2r is odd
  • None of the above
The term independent of $$x$$ in the expansion of $$\left [\sqrt {\dfrac {x}{3}} + \sqrt {\dfrac {3}{2x^{2}}} \right ]^{10}$$ is
  • $$1$$
  • $$^{10}C_{1}$$
  • $$\dfrac {5}{12}$$
  • None of these
Coefficient of $$x^n$$ in the expansion of $$\left(\displaystyle 1+\frac{x}{1!}+\frac{x^2}{2!}+...+\frac{x^n}{n!}\right)^2$$ is?
  • $$\displaystyle\frac{2^n}{n!}$$
  • $$\displaystyle\frac{2^{n-1}}{n!}$$
  • $$\displaystyle\frac{2^{n+1}}{n!}$$
  • None of these
$$\sum { { \left( -1 \right)  }^{ r } } ~ { _{  }^{ n }{ C } }_{ r }\cfrac { 1+r\log _{ e }{ 10 }  }{ { \left( 1+\log _{ e }{ { 10 }^{ n } }  \right)  }^{ r } } $$
  • $$1$$
  • $$-1$$
  • $$n$$
  • none of these
If $$\sum _{ r=0 }^{ n-1 }{ { \left( \cfrac { { _{  }^{ n }{ C } }_{ r } }{ { _{  }^{ n }{ C } }_{ r }+{ _{  }^{ n }{ C } }_{ r+1 } }  \right)  }^{ 3 } } =\cfrac { 4 }{ 5 } $$ then $$n=$$
  • $$4$$
  • $$6$$
  • $$8$$
  • None of these
If $$(1+x)^{10} = a_0 + a_1x + a_2x^2 + ..... + a_{10}x^{10}$$, then value of $$(a_0 -a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 -a_3 + a_5 - a_7 + a_9)^2$$ is
  • $$2^{10}$$
  • $$2$$
  • $$2^{20}$$
  • $$2^{30}$$
If $$\left\{ x \right\}$$  denotes the fraction part of $$'x'$$, then $$\left\{ \dfrac { { 3 }^{ 1001 } }{ 82 }  \right\} =$$
  • $$\dfrac { 9 }{ 82 }$$
  • $$\dfrac { 81 }{ 82 }$$
  • $$\dfrac { 3 }{ 82 }$$
  • $$\dfrac { 1 }{ 82 }$$
The coefficient of $$x^{160}$$ in the expansion of $$\displaystyle (x^8 + 1)^{60} \left( x^{12} + 3x^4 + \frac{3}{x^4} + \frac{1}{x^{12}} \right)^{-10}$$ is
  • $$\displaystyle ^{30}C_6$$
  • $$\displaystyle ^{30}C_5$$
  • divisible by 189
  • divisible by 203
The value of $$\sum _{ r=1 }^{ 10 }{ \left( \sin { \cfrac { 2nr }{ 11 }  } -i\cos { \cfrac { 2nr }{ 11 }  }  \right)  } $$ is
  • $$0$$
  • $$-1$$
  • $$-i$$
  • $$i$$
The co-efficient of $${x^{53}}$$ in the expression $$\sum\limits_{m = 0}^{100} {{}^{100}} {c_m}{(x - 3)^{100 - m}}{2^m}\,$$ is
  • $${}^{100}{c_{53}}$$
  • $$ {}^{98}{c_{53}}$$
  • $${}^{65}{c_{53}}$$
  • $${}^{100}{c_{65}}$$
In the expression of $$\left( {{2^x} + \frac{1}{{{4^x}}}} \right)^n\,$$ ratio  of 2nd and third terms is given by$$\,{t_3}/{t_2} = 7$$ and the sum of the co-efficients of 2nd and 3rd term is $$36,$$ then the value of $$x$$ is 
  • $$\dfrac{-1}{3}$$
  • $$\dfrac{-1}{2}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
The sum of the binomial coefficients in the expansion of $${ \left( { x }^{ -3/4 }+a{ x }^{ 5/4 } \right)  }^{ n }$$ lies between $$200$$ and $$400$$ and the term independent of $$x$$ equals $$448$$. The value of $$a$$ is
  • $$1$$
  • $$2$$
  • $$1/2$$
  • for no value of $$a$$
The coefficient $${x^n}$$ in the expression of $${\left( {1 + x} \right)^{2n}}$$ and $${\left( {1 + x} \right)^{2n - 1}}$$ are in the ratio.
  • $$1:2$$
  • $$1:3$$
  • $$3:1$$
  • $$2:1$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers