Processing math: 1%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 11 - MCQExams.com

The value of x in the expression (x+xlog10x)5, if the third term in the expansion is 10,00,000, is
  • 101
  • 101
  • 105/2
  • 105/2
The total number of terms which are dependent on the value of x in the expansion of \left(x^2 - 2 + \displaystyle\frac{1}{x^2}\right)^n is equal to   
  • 2n + 1
  • 2n
  • n
  • n + 1
If c_{0},c_{1},c_{2}\cdots c_{n} are binomial coefficients in \left ( 1+x \right )^{n}, then the value of c_{1} + c_{5} + c_{9}+c_{13}+\cdots  equals
  • \displaystyle 2^{n-1} + 2^{\frac{n}{2}}\sin \left ( \frac{n\pi }{4} \right )
  • \displaystyle 2^{n-1} + 2^{\frac{n}{2}}\cos \left ( \frac{n\pi }{4} \right )
  • \displaystyle \frac{1}{2}\left ( 2^{n-1}+2^\tfrac{n}{2}\:\sin \frac{n\pi }{4} \right )
  • \displaystyle \frac{1}{2}\left ( 2^{n-1}-2^\tfrac{n}{2}\:\sin \frac{n\pi }{4} \right )
The expresion
^{45}C_{8}+\sum _{ k=1 }^{ 7 }{^{ 52-k} C_{ 7 }} +\sum _{ i=1 }^{ 5 }{^{ 57-i} C_{ 50-i }}
  • ^{55}C_{7}
  • ^{57}C_{8}
  • ^{57}C_{7}
  • None of these
The coefficient of x^{n-2} in the polynomial (x-1)(x-2)(x-3)....(x-n) is 
  • \displaystyle \frac{n(n^{2}+2)(3n+1)}{24}
  • \displaystyle \frac{n(n^{2}-1)(3n+2)}{24}
  • \displaystyle \frac{n(n^{2}+1)(3n+4)}{24}
  • None of these
The value of the expression \displaystyle \frac{1 + 4\:.\:343 + 7\:.\:4 + 2\:.\:3\:.\:49 + 7\:.\:343}{16 + 2^6\:.\:3^1 + 2^{5}\:.\:3^{3} + 2^{6}\: . \: 3^{3} + 2^{4}\:.\:3^{4}} equal
  • \displaystyle 1
  • \displaystyle 2
  • \displaystyle 4
  • \displaystyle 3
The value of \displaystyle B=\sum_{0\leq r\leq s\leq n}^{} \displaystyle \sum \left ( C_{r}-C_{s} \right )^{2} is
  • \displaystyle \left ( n+1 \right )^{n}-2^{2n}
  • \displaystyle \left ( n+1 \right )\displaystyle ^{2n}C_{n}-2^{n}
  • \displaystyle \left ( n+1 \right )\displaystyle ^{2n}C_{n}-2^{2n}
  • \displaystyle 2^{2n}-2^{n}
If C_{0},C_{1},C_{2}....,C_{n} denote the binomial coefficients in the expansion of \left ( 1+x \right )^{n}, then \cfrac{C1}{C0}+2\cfrac{C2}{C1}++3\cfrac{C3}{C2}+.....+n\cfrac{Cn}{Cn-1} equals
  • \displaystyle \frac{n}{2}
  • \displaystyle \frac{n+1}{2}
  • \displaystyle \frac{n\left ( n-1 \right )}{2}
  • \displaystyle \frac{n\left ( n+1 \right )}{2}
If the fourth term of { \left( \sqrt { { x }^{ \left( \cfrac { 1 }{ 1+\log { x }  }  \right)  } } +\sqrt [ 12 ]{ x }  \right)  }^{ 6 } is equal to 200 and x>1, then x is equal to
  • 10\sqrt { 2 }
  • 10
  • { 10 }^{ 4 }
  • 10/\sqrt { 2 }
The number of irrational terms in the expansion of (\sqrt[8]{5}+\sqrt[6]{2})^{100} is
  • 97
  • 98
  • 96
  • 99
The value of the expression
{ C }_{ 0 }^{ 2 }-{ C }_{ 1 }^{ 2 }+{ C }_{ 2 }^{ 2 }-......+{{ \left( -1 \right)  }^{ n }} \times {{ C }_{ n }^{ 2 }} is
  • 0, if n is odd
  • { \left( -1 \right) }^{ n }, if n is odd
  • { \left( -1 \right) }^{ n/2 }\  { _{ }^{ n }{ C } }_{ n/2 }, if n is even
  • { \left( -1 \right) }^{ n-1 }\  { _{ }^{ n }{ C } }_{ n-1 }, if n is even
Value of P=\sum _{ 0\le  }^{  }{ \sum _{ r<s\le n }^{  }{ { C }_{ r } } { C }_{ s } } is
  • { 2 }^{ 2n }-\cfrac { 1 }{ 2 } ({ _{ }^{ 2n }{ C } }_{ n } )
  • { 2 }^{ 2n-1 }-\cfrac { 1 }{ 2 } ({ _{ }^{ 2n }{ C } }_{ n })
  • { 2 }^{ 2n }-\cfrac 12  ({ _{ }^{ 2n }{ C } }_{ n })
  • None of these
11th term in the expansion of
{ \left( 3-\sqrt { \cfrac { 17 }{ 4 } +3\sqrt { 2 }  }  \right)  }^{ 20 } is
  • an irrational number
  • a rational number
  • a positive integer
  • a negative integer
If n is even, then value of the expression
{ C }_{ 0 }-\cfrac { 1 }{ 2 } { C }_{ 1 }^{ 2 }+\cfrac { 1 }{ 3 } { C }_{ 2 }^{ 2 }-.....+\cfrac { { \left( -1 \right)  }^{ n } }{ n+1 } { C }_{ n }^{ 2 }
where
{ C }_{ r }={ _{  }^{ n }{ C } }_{ r } is
  • \cfrac { { \left( -1 \right) }^{ n }n! }{ (n+1){ (n/2)! }^{ 2 } }
  • \cfrac { { \left( -1 \right) }^{ n-1 }n! }{ (n+1){ (n/2)! }^{ 2 } }
  • \cfrac { { \left( -1 \right) } }{ (n+1){ (n/2)! }^{ 2 } }
  • \cfrac { { \left( -1 \right) }^{ n/2 }n! }{ (n+1){ (n/2)! }^{ 2 } }
Let
S={ C }_{ 1 }-\left( 1+\cfrac { 1 }{ 2 }  \right) { C }_{ 2 }+\left( 1+\cfrac { 1 }{ 2 } +\cfrac { 1 }{ 3 }  \right) { C }_{ 3 }-........+.{ \left( -1 \right)  }^{ n-1 }\left( 1+\cfrac { 1 }{ 2 } +....+\cfrac { 1 }{ n }  \right) { C }_{ n }
then
  • nS=1
  • \dfrac 1S is an integer
  • \dfrac 1{{ S }^{ 2 }} is an integer
  • S is independent of n
values of x for which the sixth term of the expansion of
E={ \left( { 3 }^{ \log _{ 3 }{ \sqrt { { 9 }^{ \left| x-2 \right|  } }  }  }+{ 7 }^{ (\tfrac 15)\log _{ 7 }{ \left[ (4).{ 3 }^{ \left| x-2 \right|  }-9 \right]  }  } \right)  }^{ 7 } is 567, are
  • 1
  • 2
  • 3
  • none of these
Sum of the series
\sum _{ k=0 }^{ n }{ \sum _{ r=0 }^{ n-k }{ \begin{pmatrix} n \\ k \end{pmatrix} }  } \begin{pmatrix} n-k \\ r \end{pmatrix} is
  • { 2 }^{ n }
  • { 3 }^{ n }
  • \sum _{ r=0 }^{ n }{ { (-1) }^{ r } } { C }_{ r }{ 4 }^{ r }
  • \sum _{ r=0 }^{ n }{ { _{ }^{ n }{ C } }_{ r } } { 2 }^{ r }
If in the expansion of { \left( { x }^{ 3 }-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ n },
n\in N, sum of coefficient of { x }^{ 5 } and { x }^{ 10 } is 0, then value of n is
  • 5
  • 10
  • 15
  • none of these
Value of
S={ _{  }^{ n }{ C } }_{ r }+3({ _{  }^{ n-1 }{ C } }_{ r })+5({ _{  }^{ n-2 }{ C } }_{ r })+...+  upto \quad (n-r+1)\quad terms
  • { _{ }^{ n+2 }{ C } }_{ r+2 }
  • { _{ }^{ n+2 }{ C } }_{ r+2 }+{ _{ }^{ n+1 }{ C } }_{ r+2 }
  • { _{ }^{ n+2 }{ C } }_{ r+1 }
  • { _{ }^{ n+2 }{ C } }_{ r+2 }+{ _{ }^{ n+1 }{ C } }_{ r}
If { S }_{ n }=1+q+{ q }^{ 2 }+{ q }^{ 3 }+...+{ q }^{ n } and \displaystyle { S' }_{ n }=1+\left( \frac { q+1 }{ 2 }  \right) +{ \left( \frac { q+1 }{ 2 }  \right)  }^{ 2 }+...+{ \left( \frac { q+1 }{ 2 }  \right)  }^{ n },q\neq 1 then ^{ n+1 }{ { C }_{ 1 } }+^{ n+1 }{ { C }_{ 2 } }.{ S }_{ 1 }+^{ n+1 }{ { C }_{ 3 } }.{ S }_{ 2 }+...+^{ n+1 }{ { C }_{ n+1 } }.{ S }_{ n }=
  • { 2 }^{ n-1 }.{ S' }_{ n }
  • { 2 }^{ n }.{ S' }_{ n }
  • { 2 }^{ n+1 }.{ S' }_{ n }
  • None of these
The third term from the end in the expansion of \displaystyle\left(\frac{4x}{3y}-\frac{3y}{2x}\right)^9 is
  • \displaystyle^9C_7\frac{3^5}{2^3}\frac{y^5}{x^5}
  • \displaystyle^{-9}C_7\frac{3^5}{2^3}\frac{y^5}{x^5}
  • \displaystyle^9C_7\frac{3^5}{2^3}\frac{y^5}{x^3}
  • none of these
If the second ,third and fourth terms in the expansion of {\left(x+y\right)}^{n} are 240,\,720 and 1080 respectively, then the value of x,\,y,\,n is
  • x=2,\,y=3,\,n=5
  • x=3,\,y=3,\,n=5
  • x=2,\,y=3,\,n=3
  • x=2,\,y=2,\,n=5

Maximum sum of the coefficients in the expansion of (1 - x \sin \theta+ x^{2} )^{n} is
  • 1
  • 2^{n}
  • 3^{n}
  • 0
C_{0}+3.C_{1}+3.^{2}\textrm{C}_{2}+...+3.^{n}C_{n}=5^{n}.
  • True
  • False
\left( _{  }^{ m }{ { C }_{ 0 }^{  } }+^{ m }{ { C }_{ 1 }^{  } }-^{ m }{ { C }_{ 2 }^{  } }-^{ m }{ { C }_{ 3 }^{  } } \right) +\left( ^{ m }{ { C }_{ 4 }^{  } }+^{ m }{ { C }_{ 5 }^{  } }-^{ m }{ { C }_{ 6 }^{  } }-^{ m }{ { C }_{ 7 }^{  } } \right) +...=0 if and only if for some positive integer k, m=
  • 4k
  • 4k+1
  • 4k-1
  • 4k+2
In the expansion of \left (5^{ \tfrac {1}{2}}+7^{\tfrac {1}{8}}\right )^{1024}, the number of integral terms is
  • 128
  • 129
  • 130
  • 131
If the expansion of \displaystyle\left(x^3+\frac{1}{x^2}\right)^n contains a term independent of x, then the value of n can be
  • 18
  • 20
  • 24
  • 22
In the expansion of { \left( \dfrac { 3{ x }^{ 2 } }{ 5 } +\dfrac { 5 }{ 3{ x }^{ 2 } }  \right)  }^{ 10 } mid term is
  • 291
  • 242
  • 252
  • 284
If (1+x)^{2n} =a_0+a_1x....+a_{2n}x^{2n}, then
  • a_1+a_2+a_4.....=\dfrac 12 (a_0+a_1+a_2.....)
  • a_{n+1}=a_n
  • a_{n-3}=a_{n+3}
  • a_{n-3}>a_{n+3}
If ac>b^2 then the sum of the coefficients in the expansion of (a\alpha ^2x^2+2b\alpha x+c)^n,(a,b,c,\alpha \in R, n\in N) is
  • Positive if a>0.
  • Positive if c>0.
  • Negative if a<0, n is odd.
  • Positive if c<0,n is even.
If the sum of the coefficients in the expansion of (l^2x^2-2lx+1)^{50} vanishes then l is equal to:
  • -1
  • -2
  • 1
  • 2
Find the value(s) of k such that the term independent of x in \displaystyle\left(3x^2+\frac{k}{2x}\right)^6 is 135.
  • \pm2
  • \pm1
  • \pm3
  • \pm4
Find the coefficient of x^4 in the expansion of \left(2x^2+\frac{3}{x^3}\right)^7
  • ^7C_22^53^3
  • ^7C_22^53^2
  • ^7C_23^52^2
  • ^7C_32^53^2
The sum of the series \frac{1}{1\times 2}^{25}C_0 + \frac{1}{2\times 3}^{23}C_1+\frac{1}{3\times 4}^{25}C_2+...... + \frac{1}{26\times 27}^{25}C_{25}
  • \dfrac{2^{27}-1}{26\times 27}
  • \dfrac{2^{27}-28}{26\times 27}
  • \dfrac{1}{2}\left(\frac{2^{26}+1}{26\times 27}\right)
  • \dfrac{2^{26}-1}{52}
The number of rational terms in the expansion of \left(x^{\displaystyle\frac{1}{5}}+y^{\displaystyle\frac{1}{10}}\right)^{45} is
  • 5
  • 6
  • 4
  • 7
The value of x in the expression { \left( x+{ x }^{ \log _{ 10 }{ x }  } \right)  }^{ 5 }, if the third term in the expansion is 1,000,000, is
  • 10,{ 10 }^{ { -3 }/{ 2 } }
  • 100 or { 10 }^{ { -3 }/{ 2 } }
  • 10 or { 10 }^{ { -5 }/{ 2 } }
  • None of these
Sum of the last 30 coefficients in the expansion of { \left( 1+x \right)  }^{ 59 }, when expanded in ascending power of x is
  • { 2 }^{ 59 }
  • { 2 }^{ 58 }
  • { 2 }^{ 30 }
  • { 2 }^{ 29 }
If there is a term containing x^{2r} in \left( x + \dfrac{1}{x^2} \right )^{n - 3}, then
  • n - 2r is a positive integral multiple of 3.
  • n - 2r is even
  • n - 2r is odd
  • None of the above
The term independent of x in the expansion of \left [\sqrt {\dfrac {x}{3}} + \sqrt {\dfrac {3}{2x^{2}}} \right ]^{10} is
  • 1
  • ^{10}C_{1}
  • \dfrac {5}{12}
  • None of these
Coefficient of x^n in the expansion of \left(\displaystyle 1+\frac{x}{1!}+\frac{x^2}{2!}+...+\frac{x^n}{n!}\right)^2 is?
  • \displaystyle\frac{2^n}{n!}
  • \displaystyle\frac{2^{n-1}}{n!}
  • \displaystyle\frac{2^{n+1}}{n!}
  • None of these
\sum { { \left( -1 \right)  }^{ r } } ~ { _{  }^{ n }{ C } }_{ r }\cfrac { 1+r\log _{ e }{ 10 }  }{ { \left( 1+\log _{ e }{ { 10 }^{ n } }  \right)  }^{ r } }
  • 1
  • -1
  • n
  • none of these
If \sum _{ r=0 }^{ n-1 }{ { \left( \cfrac { { _{  }^{ n }{ C } }_{ r } }{ { _{  }^{ n }{ C } }_{ r }+{ _{  }^{ n }{ C } }_{ r+1 } }  \right)  }^{ 3 } } =\cfrac { 4 }{ 5 } then n=
  • 4
  • 6
  • 8
  • None of these
If (1+x)^{10} = a_0 + a_1x + a_2x^2 + ..... + a_{10}x^{10}, then value of (a_0 -a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 -a_3 + a_5 - a_7 + a_9)^2 is
  • 2^{10}
  • 2
  • 2^{20}
  • 2^{30}
If \left\{ x \right\}  denotes the fraction part of 'x', then \left\{ \dfrac { { 3 }^{ 1001 } }{ 82 }  \right\} =
  • \dfrac { 9 }{ 82 }
  • \dfrac { 81 }{ 82 }
  • \dfrac { 3 }{ 82 }
  • \dfrac { 1 }{ 82 }
The coefficient of x^{160} in the expansion of \displaystyle (x^8 + 1)^{60} \left( x^{12} + 3x^4 + \frac{3}{x^4} + \frac{1}{x^{12}} \right)^{-10} is
  • \displaystyle ^{30}C_6
  • \displaystyle ^{30}C_5
  • divisible by 189
  • divisible by 203
The value of \sum _{ r=1 }^{ 10 }{ \left( \sin { \cfrac { 2nr }{ 11 }  } -i\cos { \cfrac { 2nr }{ 11 }  }  \right)  } is
  • 0
  • -1
  • -i
  • i
The co-efficient of {x^{53}} in the expression \sum\limits_{m = 0}^{100} {{}^{100}} {c_m}{(x - 3)^{100 - m}}{2^m}\, is
  • {}^{100}{c_{53}}
  • {}^{98}{c_{53}}
  • {}^{65}{c_{53}}
  • {}^{100}{c_{65}}
In the expression of \left( {{2^x} + \frac{1}{{{4^x}}}} \right)^n\, ratio  of 2nd and third terms is given by\,{t_3}/{t_2} = 7 and the sum of the co-efficients of 2nd and 3rd term is 36, then the value of x is 
  • \dfrac{-1}{3}
  • \dfrac{-1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{2}
The sum of the binomial coefficients in the expansion of { \left( { x }^{ -3/4 }+a{ x }^{ 5/4 } \right)  }^{ n } lies between 200 and 400 and the term independent of x equals 448. The value of a is
  • 1
  • 2
  • 1/2
  • for no value of a
The coefficient {x^n} in the expression of {\left( {1 + x} \right)^{2n}} and {\left( {1 + x} \right)^{2n - 1}} are in the ratio.
  • 1:2
  • 1:3
  • 3:1
  • 2:1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers