CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 12 - MCQExams.com

If $$C_r \, = \, (^{100 C _ r }) , then \,  E = \sum_{r = 0 }^{n + 4 } (-1)^r  \, c_r \, c_{r + 1}$$
  • $$(^{100} C _ {45} )$$
  • $$(^{100} C _ {47} )$$
  • $$(^{101} C _ {50} )$$
  • $$(^{100 C _ {51} })$$
If the $$rth$$ term in the expansion of $$\left(\dfrac{x}{3}-\dfrac{2}{x^{2}}\right)^{10}$$ contains $$x^{4}$$ then $$r$$ is equal to
  • $$2$$
  • $$1$$
  • $$3$$
  • $$5$$
If $$ C_{0}$$,$$C_{1}$$,$$C_{2}$$,...,$$C_{n} $$ are the binomial coefficients and $$n$$  is odd, then
$$ 2C_{1} $$+$$2^{3}.C_{5}+$$...$$+2^{n}\ ^{n}C_{n}$$ equals
  • $$\dfrac {3^{n}+(-1)^{n}}{2}$$
  • $$\dfrac {3^{n}-(-1)^{n}}{2}$$
  • $$\dfrac {3^{n}+1}{2}$$
  • $$\dfrac {3^{n}-1}{2}$$
$$\begin{array} { l } { \text { Assertion } ( \mathrm { A } ) : \text { The expansion of } ( 1 + x ) ^ { n } = } \\ { C _ { 0 } + C _ { 1 } x + C _ { 2 } x ^ { 2 } + \ldots + C _ { n } x ^ { n } } \\ { \text { Reason (R): If } x = - 1 , \text { then the above expansion is } } \\ { \text { zero } } \end{array}$$
  • $$\begin{array} { l } { \text { Both A and R are true and } \mathrm { R } \text { is the correct } } \\ { \text { explanation of } \mathrm { A } } \end{array}$$
  • $$\begin{array} { l } { \text { Both A and R are true and R is not the } } \\ { \text { correct explanation of } \mathrm { A } } \end{array}$$
  • $$A$$ is true, but $$R$$ is false
  • $$A$$ is false, but $$R$$ is true
If the ratio $$T_2 : T_3$$ in the expansion of $$(a+b)^n$$ and $$T_3 : T_4$$ in the expansion of  $$(a+b)^{n+3}$$ are equal , then n $$=$$
  • 3
  • 4
  • 5
  • 6
The coefficient  of $${x^5}$$ in the expansion of $${\left( {1 + {x^2}} \right)^5}{\left( {1 - x} \right)^4}$$ is 
  • $${4.^6}{C_4}$$
  • $${2.^6}{C_4}$$
  • $${2.^6}{C_2}$$
  • $${4.^6}{C_2}$$
In the binomial expansion of $$( a - b ) ^ { n } n > 0$$ and the sum $$5 ^ { t h }$$ and $$6 ^ { \text { th } }$$ terms is zero, then $$\frac { a } { b }$$ equal to 
  • $$\frac { 5 } { n - 4 }$$
  • $$\frac { 6 } { n - 5 }$$
  • $$\frac { n - 5 } { 6 }$$
  • $$\frac { n - 4 } { 5 }$$
The co-efficient of $$x$$ in the expansion of $$\left( 1 - 2 x ^ { 3 } + 3 x ^ { 5 } \right) \left( 1 + \dfrac { 1 } { x } \right) ^ { 8 }$$ is 
  • $$56$$
  • $$65$$
  • $$154$$
  • $$62$$
If the sum of odd terms and the sum of even terms in $$(x+a)^{n}$$ are $$p$$ and $$q$$ respectively then $$p^{2}+q^{2}=$$
  • $$\dfrac{(x+a)^{2n}-(x-a)^{2n}}{2}$$
  • $$(x+a)^{2n}-(x-a)^{2n}$$
  • $$\dfrac{(x+a)^{2n}+(x-a)^{2n}}{2}$$
  • $$(x+a)^{2n}+(x-a)^{2n}$$
The sum of the series
$$\dfrac {2\left(\dfrac {n}{2}\right)!\left(\dfrac {n}{2}\right)!}{(n!)}[C^{2}_{0}-2C^{2}_{1}+3C^{2}_{2}...+(-1)^{n}(n+1)C^{2}_{n}]$$
where $$n$$ is an even positive integer, is equal to
  • $$0$$
  • $$(-1)^{\dfrac {n}{2}}(n+1)$$
  • $$(-1)^{\dfrac {n}{2}}(n+2)$$
  • $$(-1)^{n}n$$
Integral part of $$(8+3\sqrt{7})^{n}$$ is 
  • an even number
  • an odd number
  • an even or odd number depending upon the value of n
  • nothing can be said
If $$A$$ and $$b$$ are coefficients of $$( 1 + x ) ^ { 2 }$$ and $$( 1 + x ) ^ { 2 n - 1 }$$ respectively, then
  • $$d = B$$
  • $$A = 2 B$$
  • $$2 A = B$$
  • $$A + B = 0$$
The total number of terms in the expansion of $$( x + a ) ^ { 200 } + ( x - a ) ^ { 200 }$$ after simplification is
  • $$101$$
  • $$102$$
  • $$201$$
  • $$202$$
The sum of the co-efficients of all odd degree terms in the expansion of $${ \left( x+\sqrt { { x }^{ 3 }-1 }  \right)  }^{ 5 }+{ \left( x-\sqrt { { x }^{ 3 }-1 }  \right)  }^{ 5 }$$
$$(x> 1)$$ is:
  • $$2$$
  • $$-1$$
  • $$0$$
  • $$1$$
Sum of the coefficient of integral powers of x in $${\left(1-2\sqrt{x}\right)}^{50}$$ is 
  • $$\dfrac{{3}^{50}+1}{2}$$
  • $$\dfrac{{3}^{50}}{2}$$
  • $${2}^{49}-1$$
  • $${2}^{49}+1$$
Find the middle terms(s) in the expansion of $$\left ( 3x-\dfrac{2}{x^{2}} \right )^{15}$$.
  • $$\dfrac {-6435\times 3^7\times 2^7}{x^6}, \dfrac {6437\times 3^7 \times 2^8}{x^9}$$
  • $$\dfrac {-6435\times 3^8\times 2^7}{x^6}, \dfrac {6437\times 3^7 \times 2^8}{x^9}$$
  • $$\dfrac {-6435\times 3^8\times 2^7}{x^6}, \dfrac {6437\times 3^7 \times 2^7}{x^9}$$
  • $$\dfrac {-6435\times 3^8\times 2^7}{x^6}, \dfrac {6437\times 3^8 \times 2^8}{x^9}$$
Sum of coefficients of $${ x }^{ 2r }$$, $$r= 1,2,3,$$....... in $$(1+x{ ) }^{ n }$$ is
  • $$({ 2 }^{ n-1 }-1)$$
  • $$({ 2 }^{ n-1 }+1)$$
  • $$({ 2 }^{ n-2 }+1)$$
  • $$({ 2 }^{ n-2 }-1)$$
The sum of coefficients of integral powers of $$x$$ in the binomial expansion of $$(1-2\sqrt x)^{50}$$ is
  • $$\frac{1}{2}(3^{50}-1)$$
  • $$\frac{1}{2}(2^{50}+1)$$
  • $$\frac{1}{2}(3^{50}+1)$$
  • $$\frac{1}{2}(3^{50})$$
Coefficient of $$x^{n}$$ in expansion of $$\dfrac{(1+2x)^{2}}{(1-x)^{3}}$$ is
  • $$2n$$
  • $$\dfrac{3}{2}(3n^{2}+n)$$
  • $$n^{2}+n-1$$
  • $$None\ of\ these$$
Coefficient of $$x^{r}$$ in the expansion of $$(1-2x)^{-1/2}$$ is
  • $$\dfrac{(2r)!}{(r!)^{2}}$$
  • $$\dfrac{(2r)!}{2^{r}(r!)^{2}}$$
  • $$\dfrac{(2r)!}{(r!){2^{2r}}}$$
  • $$\dfrac{(2r)!}{2^{r}(r+1)!(r+1)}$$
The coefficient of $$x^{99}$$ in $$(x+1)(x+3)(x+5).....(x+199)$$ is
  • $$1+2+3+...+99$$
  • $$1+3+5+...+199$$
  • $$1.3.5............199$$
  • $$None\ of\ these$$
The sum of coefficient of integral powers of $$x$$ in the binomial expansions $${\left( {1 - 2\sqrt x } \right)^{50}}$$ is:
  • $$\frac{1}{2}\left( {{3^{50}} - 1} \right)$$
  • $$\frac{1}{2}\left( {{2^{50}} + 1} \right)$$
  • $$\frac{1}{2}\left( {{3^{50}} + 1} \right)$$
  • $$\frac{1}{2}\left( {{3^{50}}} \right)$$
The middle term in the expansion of $${\left(3x-\dfrac{{x}^{3}}{6}\right)}^{9}$$ is 
  • $$\dfrac{21}{16}{x}^{19}$$
  • $$\dfrac{-21}{16}{x}^{19}$$
  • $$\dfrac{21}{16}{x}^{-19}$$
  • $$\dfrac{-21}{16}{x}^{-19}$$
The sum of the co-efficient of all odd degree terms in the expansion of $$\left( x + \sqrt { x ^ { 3 } - 1 } \right) ^ { 5 } + \left( x - \sqrt { x ^ { 3 } - 1 } \right)$$ 
  • $$0$$
  • $$1$$
  • $$2$$
  • $$- 1$$
Sum of the series $$)^{100}C_1)^2 + 2(^{100}C_2)^2 + 3(^{100}C_3)^2+.......+100(^{100}C_{100})^2$$ equals
  • $$\frac{2^{99}[1.3.5 ... ... (199)]}{99!}$$
  • $$100. ^{200}C_{100}$$
  • $$50. ^{200}C_{100}$$
  • $$100. ^{199}C_{99}$$
The sum of the series $$^{2020}C_0- ^{2020}C_1+^{2020}C_2-^{2020}C_3+.....+^{2020}C_{1010}$$ is 
  • $$\dfrac{1}{2}^{2020}C_{1010}$$
  • $$^{2020}C_{1010}$$
  • Zero
  • $$\dfrac{-1}{2}^{2020}C_{1010}$$
The value of $$\dfrac{1}{12!}+\dfrac{1}{10!2!}+\dfrac{1}{8!4!}+...+\dfrac{1}{12!}$$
  • $$\dfrac{{2}^{12}}{12!}$$
  • $$\dfrac{{2}^{11}}{12!}$$
  • $$\dfrac{{2}^{11}}{11!}$$
  • None of these
If $${ \left( 1+x+2{ x }^{ 2 } \right)  }^{ 20 }=0+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+......+{ a }_{ 40 }{ x }^{ 40 }$$ then $${ a }_{ 1 }+{ a }_{ 3 }+{ a }_{ 5\quad  }+......+{ a }_{ 37\quad  }$$ equals -
  • $${ 2 }^{ 19}({ 2 }^{ 20 }-21)$$
  • $${ 2 }^{ 20 }({ 2 }^{ 19 }-19)$$
  • $${ 2 }^{ 19 }({ 2 }^{ 20 }+21)$$
  • None of these
The greatest terms of the expansion $$(2x+5y)^{13}$$ when $$x=10$$, $$y=2$$ is?
  • $$^{13}C_5\cdot 20^8\cdot 10^5$$
  • $$^{13}C_6\cdot 20^7\cdot 10^4$$
  • $$^{13}C_4\cdot 20^9\cdot 10^4$$
  • None of these
The coefficient of x$$^9$$ in (x - 1) (x - 4) (x - 9)........(x - 100) is
  • -235
  • 235
  • 385
  • None of these
Find the value of $$\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...$$
  • $$\dfrac{{2}^{n-1}}{(n-1)!}$$
  • $$\dfrac{{2}^{n}}{n!}$$
  • $$\dfrac{{2}^{n-1}}{n!}$$
  • None of these
The constant term in the expansion of $${ (1+x) }^{ n }{ (1+\frac { 1 }{ x } ) }^{ n }$$ is 
  • $${ C }_{ 0 }^{ 2 }+2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }+......+(n+1){ C }_{ n }^{ 2 }$$
  • $${ ({ C }_{ 0 }+{ C }_{ 1 }+.....+{ C }_{ n }) }^{ 2 }$$
  • $${ C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+.....+{ C }_{ n }^{ 2 }$$
  • None of these
The largest coefficient in the expansion of $$\left(4+3x\right)^{25}$$ is 
  • $$^{25}C_{11}3^{25}\left(\dfrac{4}{3}\right)^{14}$$
  • $$^{25}C_{11}4^{25}\left(\dfrac{3}{4}\right)^{11}$$
  • $$^{25}C_{14}4^{14}3^{11}$$
  • $$^{25}C_{14}4^{11}.3^{14}$$
The sum of the co-efficient of all odd degree terms in the expansion of $$\left( x + \sqrt { x ^ { 3 } - 1 } \right) ^ { 5 } + \left( x - \sqrt { x ^ { 3 } - 1 } \right) ^ { 5 } , ( x > 1 )$$ is : 
  • $$- 1$$
  • $$1$$
  • $$0$$
  • $$2$$
If the last term in the binomial expansion of $$\left(2^{1/3}-\dfrac {1}{\sqrt {2}}\right)^{n}$$ is $$\left(\dfrac {1}{3^{5/3}}\right)^{\log_{3}8}$$, then the $$5^{th}$$ terms form the beginning is:
  • $$210$$
  • $$420$$
  • $$103$$
  • $$None\ of\ these$$
Coefficient of $$x^{25}$$ in $$(1+x+x^{2}+x^{3}+....+x^{10})^{7}$$ is
  • $$^{31}C_{15}-7.^{20}C_{14}$$
  • $$^{31}C_{14}-7.^{20}C_{14}$$
  • $$31$$
  • $$None\ of\ these$$
The coefficient of $$x^{8}$$ in $$(1+2x^{2}-x^{3})^{9}$$ is 
  • $$1680$$
  • $$2140$$
  • $$2520$$
  • $$2730$$
The coefficients of $$x^{10}$$ in the expansion of $$(1+x)^{15}+(1+x)^{16}+(1+x)^{17}+....+(1+x)^{30}$$ is 
  • $$^{31}C_{10}-^{15}C_{10}$$
  • $$^{31}C_{11}-^{15}C_{11}$$
  • $$^{30}C_{10}-^{15}C_{10}$$
  • $$^{31}C_{10}-^{14}C_{11}$$
The sum of the coefficient in the expansion of $$(a+2b+c)^{11}$$ is-
  • $$4^{11}$$
  • $$32$$
  • $$31$$
  • $$None\ of\ these$$
State true or false.
The general term for $$3,7,13,21,31,43 $$........ is $$n^2−(n−1),n=1,2,3,...$$
  • True
  • False
The coefficient of $$x^{3}$$ in the expansion of $$(1+2x+3x^{2})^{10}$$ is
  • Less than $$200$$
  • Less than $$400$$ but greater than $$200$$
  • $$1400$$
  • $$1500$$
The coefficient of $${x}^{n}$$ in the expansion of $$\dfrac { 1 }{ \left( 1-x \right) \left( 1-2x \right) \left( 1-3x \right)  }$$ is
  • $$\dfrac { 1 }{ 2 } \left( { 2 }^{ n+2 }-{ 3 }^{ n+3 }+1 \right)$$
  • $$\dfrac { 1 }{ 2 } \left( { 2 }^{ n+2 }-{ 2 }^{ n+3 }+1 \right)$$
  • $$\dfrac { 1 }{ 2 } \left( { 2 }^{ n+2 }-{ 3 }^{ n+2 }+1 \right)$$
  • $$None\ of\ these$$
The number of rational terms in the expansion of $${ \left( 1+\sqrt { 2 } +\sqrt [ 3 ]{ 3 }  \right)  }^{ 6 }$$ is
  • $$6$$
  • $$7$$
  • $$5$$
  • $$8$$
The coefficient of $$x^4$$ in the expansion of $$(1+x+x^2+x^3)^{11}$$ is 
  • $$990$$
  • $$495$$
  • $$330$$
  • none of these
The coefficient of x$$^{24}$$ in the expansion of 
(1 +3x + 6x$$^2$$ + 10x$$^3$$+ -----------+$$\infty$$)$$^{2/3}$$ =
  • 300
  • 250
  • 25
  • 205
The co-efficient of $$x^{k}$$ in expansion of $$1+\left(1+x\right)+\left(1+x\right)^{2}++\left(1+x\right)^{n}$$ is : $$\left(n>k\right)$$
  • $$^{n}C_{k}$$
  • $$^{n+1}C_{k}$$
  • $$^{n+1}C_{k+1}$$
  • $$None\ of\ these$$
The number of terms in the expansion of $${ \left[ { a }^{ 3 }+\dfrac { 1 }{ { a }^{ 3 } } +1 \right]  }^{ 100 }$$ is
  • $$201$$
  • $$300$$
  • $$200$$
  • $$^{ 100 }{ C }_{ 3 }$$
For $$x\in R, x\neq -1$$ if $$(1+x)^{2016}+x(1+x)^{2015}+x(1+x)^{2014}+.+x^{2016}=\sum _{ i=0 }^{ 2016 }{ { a }_{ i }{ x }^{ i } }$$, then  $$a_{17}$$ is equal to 
  • $$\dfrac{2017!}{ 17!2000!}$$
  • $$\dfrac{2016!}{ 17!1999!}$$
  • $$\dfrac{2017!}{2000!}$$
  • $$\dfrac{2016!}{ 16!}$$
The middle term in the expansion of $$\left(1-\dfrac{1}{x}\right)^{n}\left(1-x\right)^{n}$$ is
  • $$^{2n}C_{n}$$
  • $$-^{2n}C_{n}$$
  • $$-^{2n}C_{n-1}$$
  • $$none\ of\ these$$
If the middle term in the expansion of $$( 1 + x ) ^ { 2 n }$$ is the greatest term, then $$x$$ lies in the interval ___________________.
  • $$\left( \frac { n } { n + 1 } , \frac { n + 1 } { n } \right)$$
  • $$\left( \frac { n + 1 } { n } , \frac { n } { n + 1 } \right)$$
  • $$( n - 2 , n )$$
  • $$( n - 1 , n )$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers