Explanation
$${\textbf{Step -1: Identify binomial coefficients and number of terms in a binomial expansion.}}$$
$$(x^2-x-2)^5=(x^2-2x+x-2)^5$$
$$=(x(x-2)+1(x-2))^5$$
$$=((x-2)(x+1))^5$$
$$=(x-2)^5(x+1)^5$$
$$=[^{5}C_{0}x^5+^{5}C_{1}x^4.(-2)+^{5}C_{2}x^3.(-2)^2+^{5}C_{3}x^2.(-2)^3+^{5}C_{4}x.(-2)^4+(-2)^5]$$
$$\times[^{5}C_{0}x^5+^{5}C_{1}x^4+^{5}C_{2}x^3+^{5}C_{3}x^2+^{5}C_{4}x+1]$$
$$\therefore\text{coefficient of }x^5\text{ in the expansion of the product }(x-2)^5(x+1)^5$$
$$=-2^5+1+^5C_2 .^5C_3(-2)^3+^5C_3 .^5C_2(-2)^2+^5C_4 .^5C_1(-2)^1+^5C_1 .^5C_4(-2)^4$$
$$=-32+1-800+400-50+400$$
$$=-81$$
$${\textbf{Hence, option C is correct.}}$$
Please disable the adBlock and continue. Thank you.