Explanation
$$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$ Applying to the above question, we get $$T_{3+1}=\:^6C_{3}x^{\dfrac {3}{2(\log x+1)}}x^{\dfrac {3}{12}}$$ $$=200$$ $$20x^{\dfrac {3}{2(\log x+1)}}x^{\dfrac {3}{12}}=200$$ $$x^{\dfrac {3}{2(\log x+1)}+\dfrac {1}{4}}=10$$ Taking $$\log$$ to the base $$10$$ ($$\log_{10}$$) on both sides, we get $$\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}=1$$ $$\dfrac{3}{2(\log x+1)}=\dfrac{3}{4}$$ $$4=2(\log_{10}x+1)$$ $$2=\log_{10}x+1$$ $$1=\log_{10}x$$ Taking anti-logarithm, we get $$x=10$$
Assertion (A) : Number of the disimilar terms in the sum of expansion $$(x+a)^{102}+(x-a)^{102}$$ is $$206$$
Reason (R) : Number of terms in the expansion of $$(x+b)^{n}$$ is n + 1
Please disable the adBlock and continue. Thank you.