Processing math: 15%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 2 - MCQExams.com


The coefficient of 1x in the expansion of (1+x)n(1+1x)n is :
  • n!(n1)!(n+1)!
  • 2n!(n1)!(n+1)!
  • n!(2n1)!(2n+1)!
  • 2n!(2n1)!(2n+1)!
Coefficient of x in the expansion of (12x3+3x5)(1+1x)8 is
  • 154
  • 164
  • 146
  • 156
If a is the coefficient of the middle term in the expansion of (1+x)2n and b,c are the coefficients of the two middle terms in the expansion of (1+x)2n1 then 
  • a+b=c
  • a=b+c
  • a=b=c
  • b=a+c
The middle term in the expansion of (13x+3x2x3)2n is
  • 6nC3n(x)3n
  • 6nC2n(x)2n+1
  • 4nC3n(x)3n
  • 6nC3n(x)3n1
Sum of the coefficients in the expansion of (5x4y)n where n is a positive integer is
  • 1
  • 9n
  • (1)n
  • 5n
If n is a positive integer, then the coefficient of xn in the expansion of (1+2x)n1x is
  • n.3n
  • (n1)3n
  • (n+1)3n
  • 3n
The coefficient of {x}^{p} the expansion of (\displaystyle {x}^{2}+\frac{1}{{x}})^{{n}}, when it exists is
  • 2n_{{C}_{\frac{4{n}+{p}}{3}}}
  • 2n_{{C}_{\frac{2{n}+{p}}{3}}}
  • 2n_{{C}_{\frac{{n}+{p}}{3}}}
  • n_{{C}_{\frac{{n}+{p}}{3}}}
If n is a positive integer, then the coefficient of x^n in the expansion of \dfrac{(1+x)^n}{1-x} is

  • (n+1)2^n
  • 2^n
  • 2^{n-1}
  • n.2^n
The coefficient of the middle term in the binomial expansion in powers of x of (1+\alpha x)^{4} and of (1-\alpha x)^{6} is same if \alpha=
  • -5/3
  • 3/5
  • -3/10
  • 10/3
The sum of the coefficients in the expansion of  (1-x)^{10}

  • 0
  • 1
  • -1
  • 2^{10}
In the expansion of (1+{x})^{\mathrm{n}}, the 5^{{t}{h}} term is 4 times the 4^{{t}{h}} term and the 4^{{t}{h}} term is 6 times the 3^{{r}{d}} term. than n =
  • 9
  • 10
  • 11
  • 12
Assertion (A) : The coefficient of x^{7} in (\displaystyle \frac{x^{2}}{2}-\frac{2}{x})^{9} is zero

Reason (R) : r in 
t_{r+1} that contains coefficient of x^{7} is not positive integer


  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true, but R is false
  • A is false, but R is true
lf the 5^{\mathrm{t}\mathrm{h}} term of (\displaystyle \frac{\mathrm{q}}{2\mathrm{x}}-\mathrm{p}\mathrm{x})^{8} is 1120 and \mathrm{p}+\mathrm{q}=5,\ \mathrm{p}>\mathrm{q} then \mathrm{p}=
  • 3
  • 6
  • 4
  • 7
lf (1+\mathrm{k}{\mathrm{x}})^{10}=\mathrm{a}_{0}+\mathrm{a}_{1}\mathrm{x}+\mathrm{a}_{2}\mathrm{x}^{2}+\ldots.+\mathrm{a}_{10}\mathrm{x}^{10} and \displaystyle \mathrm{a}_{2}+\frac{7}{5}\mathrm{a}_{1}+1=0 then \mathrm{k}=
  • -1/5, -1/9
  • 1/5, 1/9
  • -1/5, -1/7
  • 1/5, -1/9

^{(n+1)}{{C}_{1}}+^{({n}+1)}{{C}_{2}}+^{({n}+1)}{{C}_{3}}+\ldots..+^{({n}+1)}{{C}_{{n}}}=
  • 2(2^{{n}}+1)
  • 2(2^{{n}}-1)
  • 2^{{n}+1}
  • (2^{{n}+1}-1)
The ratio of (r + 1) ^{th} and (r - 1)^ {th} terms in the expansion of ({a}-b)^{n} is
  • \displaystyle \frac{(n-r+2)(n-r+1)}{r(r-1)}\cdot\frac{b^{2}}{\mathrm{a}^{2}}
  • \displaystyle \frac{(n-r+2)(n-r+1)}{r(r-1)}.\frac{\mathrm{a}^{2}}{b^{2}}
  • (\displaystyle \frac{n-r+2}{r})\cdot\frac{b}{\mathrm{a}}
  • (\displaystyle \frac{n-r+1}{r-1})\cdot\frac{b}{\mathrm{a}}
If the 2^{nd}, 3^{rd} and 4^{th} terms in the expansion of (a+b)^n are 135, 30 and \dfrac {10}{3} respectively, then the value of n is:
  • 5
  • 6
  • 7
  • 8
Assertion (A) : The coefficient of x^{-2} in the expansion of (x^{2}+\displaystyle \frac{1}{x})^{5} is equal to { ^{ 5 }C_{ 4 } }
Reason (R) : The value of r for the above expansion is 3.
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true, but R is false
  • A is false, but R is true
If the term containing x^3 in (1-\dfrac {x}{n})^n is {\dfrac{7}{8}} when x = -2 and n is a positive integer, then n =
  • 7
  • 8
  • 9
  • 10
In the expansion of \left[2^{\log_2 {\sqrt{9^{x-1}+7}}}+\displaystyle \frac{1}{2^{\frac{1}{5}\log_2 \displaystyle {(3^{x-1}+1})}}\right]^{7}, 6th term is 84. Then x =
  • 1
  • 2
  • 1 or 2
  • 2 or 4

\displaystyle \sum_{{r}=0}^{{n}}({r}-4){C}_{{r}=}
  • (n-8)2^n
  • (n-8)2^{n-1}
  • (n-8)2^{n-4}
  • 0

The sum of the coefficients of middle terms in the expansion of (1+{x})^{2{n}-1}
  • (2{n})!
  • \displaystyle \frac{(2{n})!}{{n}!}
  • \displaystyle \frac{(2{n})!}{({n}!)^{2}}
  • \displaystyle \frac{(2n-1)!}{{n}!}
^{(2n+1)}C_{0}-^{(2n+1)}C_{1}+^{(2n+1)}C_{2}-....^{2n+1}C_{2n}=
  • 1
  • 2^{2{n}}
  • -1
  • 0

The number of irrational terms in the expansion { \left( \sqrt [ 4 ]{ 3 } +\sqrt [ 3 ]{ 7 }  \right)  }^{ 36 } is
  • 30
  • 33
  • 31
  • 29

\displaystyle \sum_{{r}=0}^{{n}}{r}.{C}_{{r}=}^{2}
  • \dfrac{n}{2}\dfrac{(2n)!}{(n!)^{2}}
  • \dfrac{(2n)!}{(n!)^{2}}
  • (2n)!
  • \displaystyle \frac{\mathrm{n}(2\mathrm{n})!}{2}
The sum of the coefficients of the first 10 terms in the expansion of (1-x)^{-3}
  • 220
  • 286
  • 120
  • 150
\displaystyle \sum_{{r}=2}^{{n}}{ ^{ 5r-3 }C_{ r } }=
  • (5{n}+6).2^{{n}-1}-2{n}+2
  • (5{n}+6).2^{{n}-1}-2{n}+3
  • (5{n}-6)2^{{n}-1}-2{n}+2
  • (5{n}-6)2^{{n}-1}-2{n}+3

S_{1}=^{m}{c}_{1}+(m+1)_{C_{2}+}(m+2)_{C_{3}+\ldots.+}(m+n-1)_{C_{n}}

S_{2}=^{n}{c}_{1}+(n+1)_{C_{2}+}(n+2)_{C_{3}+\ldots.+}(m+n-1)_{C_{n}}

  • {S}_{1}+{S}_{2}=0
  • {S}_{1}-{S}_{2}=0
  • S_1+S_2=2^n
  • {S}_{1}+{S}_{2}=2^{{n}}-1

If \mathrm{C}_{0}+2\mathrm{C}_{1}+4\mathrm{C}_{2}+\ldots.+2^{\mathrm{n}}\mathrm{C}_{\mathrm{n}}=243, then n =
  • 3
  • 4
  • 5
  • 6

The sum \displaystyle \sum_{\lrcorner 0<\leq}\sum_{{j}\leq 10}{C}_{{j}}({C}_{{i}})=
  • 2^{10}
  • 2^{10}-1
  • 3^{10}-1
  • 3^{10}
The number of non zero terms in the expansion of (1+3\sqrt{2}x)^{9}+(1-3\sqrt{2}x)^{9} is
  • 9
  • 0
  • 5
  • 10
If x + y = 1, then \displaystyle \sum_{r=0}^{n}r^{n}C_{r}x^{r}.y^{n-r}=
  • 1
  • n
  • nx
  • ny
If x + y = 1 then \displaystyle \sum_{r=0}^{n}r^{2}  ^{n}C_{r}x^{r}y^{n-r}
  • nxy
  • nx(x + yn)
  • nx(nx + y)
  • nx

The number of non zero terms in (x+\mathrm{a})^{75}+(x-\mathrm{a})^{75}
  • 38
  • 76
  • 34
  • 32
If the fourth term in the expansion of 

\left(\sqrt{x^\dfrac{1}{\log x+1}}+x^\dfrac{1}{12}\right)^{6} is equal to 200 and x>1, then x is
  • 10
  • 10^{-4}
  • 1
  • -4
If in the expansion of (\displaystyle \frac{1}{x}+x\tan x)^{5}, the ratio of 4^{th} term to the 2^{nd} term is \displaystyle \frac{2}{27}\pi^{4}, then the value of {x} can be
  • \displaystyle \frac{-\pi}{6}
  • \displaystyle \frac{-\pi}{3}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{12}
In the expansion of (1+x)^{n}.(1+y)^{n}.(1+\mathrm{z})^{n} the sum of the coefficients of the terms of degree r is
  • (^{n}C_{r})^{3}
  • ^{3n}C_{r}
  • 3\times nC_{r}
  • nC_{3r}
The number of terms in the expansion of \left [ (a+4b)^{3}(a-4b)^{3} \right ]^{2} are
  • 6
  • 7
  • 8
  • 32
The number of terms in the expansion of \left [ (a+4b)^{3}+(a-4b)^{3} \right ]^{2} are
  • 6
  • 8
  • 7
  • 3
The sum of the coefficients of the middle terms of (1+{x})^{2{n}-1} is
  • ^{2n-1}C_{n}
  • ^{2n-1}C_{n+1}
  • ^{2n}C_{n-1}
  • ^{2n}C_{n}
The coefficient of x^4 in \displaystyle \left ( \frac{x}{2} - \frac{3}{x^2} \right )^{10} is
  • \displaystyle \frac{45}{64}
  • \displaystyle \frac{243}{128}
  • \displaystyle \frac{405}{256}
  • \displaystyle \frac{810}{512}
If the coefficients of r^{th} term and (r+1)^{th} term in the expansion of (1+x)^{20} are in the ration 1 : 2, then r=
  • 6
  • 7
  • 8
  • 9
The coefficient of the 8th term in the expansion of (1+x)^{10} is
  • 120
  • 7
  • ^{10}C_8
  • 210
If T_r denotes the rth term in the expansion of \displaystyle \left ( x+\frac{1}{y} \right)^{23} then
  • T_{12}=T_{13}
  • x^2T_{13}=T_{12}
  • T_{12} = xy T_{13}
  • T_{12} + T_{12} = 25
The coefficient of x^3 in \displaystyle \left ( \sqrt{x^5}+ \frac{3}{\sqrt{x^3}} \right )^5 is
  • 0
  • 120
  • 420
  • 540
The coefficient of the middle term in the expansion of (1+x)^{2n} is
  • ^{2n}C_{n}
  • \displaystyle \frac{1.3.5\ldots..(2n-1)}{n!}2^{n}
  • 2.6\ldots(4n-2)
  • 2.4\ldots\ldots\ldots 2n

Assertion (A) : Number of the disimilar terms in the sum of expansion (x+a)^{102}+(x-a)^{102} is 206

Reason (R) : Number of terms in the expansion of (x+b)^{n} is n + 1



  • Both A and R are individually true and R is the correct explanation of A.
  • Both A and R are individually true and R is not correct explanation of A.
  • A is true but R is false
  • A is false but R is true
In the binomial expansion of (a-b)^n, n \geq 5, the sum of 5^{th} and 6^{th} terms is zero, then \dfrac ab equals
  • \displaystyle \frac{5}{n-4}
  • \displaystyle \frac{6}{n-5}
  • \displaystyle \frac{n-5}{6}
  • \displaystyle \frac{n-4}{5}
The total number of rational terms in the expansion of \left(7^{\frac 13} + 11^{\frac 19}\right)^{6561} is

  • 731
  • 729
  • 728
  • 730
  • 732
If the coefficient of x^7 in \displaystyle \left [ ax^2 + \left ( \dfrac{1}{bx} \right ) \right ]^{11} equals the coefficient of x^{-7} in \displaystyle \left [ ax - \left ( \dfrac{1}{bx^2} \right ) \right ]^{11}, then a and b satisfy the relation
  • a-b=1
  • a+b=1
  • \dfrac{a}{b}=1
  • ab=1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers