Processing math: 4%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 5 - MCQExams.com

In the expansion of (2+53)120 the number of irrational terms is
  • 12
  • 13
  • 108
  • 54
If the fourth term in the expansion of (1xlogx+1+x1/12)6 is equal to 200 and x>1, then x is equal to
  • 102
  • 10
  • 104
  • None of these
If A and B are coefficients of {x}^{n} in the expansions of { (1+x) }^{ 2n } and { (1+x) }^{ 2n-1 } respectively, then \dfrac AB is equal to
  • 1
  • 2
  • \dfrac 12
  • \dfrac 1n
The expression { C }_{ 0 }+2{ C }_{ 1 }+3{ C }_{ 2 }+......+(n+1){ C }_{ n } is equal to
  • { 2 }^{ n-1 }
  • n({ 2 }^{ n-1 })
  • n({ 2 }^{ n-1 })+{ 2 }^{ n }
  • (n+1){ 2 }^{ n }
If f(n)=\sum _{ k=1 }^{ n }{ \sum _{ j=k }^{ n }{ ({ _{  }^{ n }{ C } }_{ j } } ) } ({ _{  }^{ j }{ C } }_{ k }), find f(n).
  • { 3 }^{ n }-{ 2 }^{ n }
  • { 3 }^{ n }+{ 2 }^{ n }
  • { 3 }^{ n-1 }-{ 2 }^{ n -1}
  • { 3 }^{ n+1 }-{ 2 }^{ n+1 }
If the third term in the expansion { \left( x+{ x }^{ \log _{ 5 }{ x }  } \right)  }^{ 5 } is 2, then x equals
  • 1/5,5
  • 1/5,1/\sqrt {5}
  • \sqrt{5},5
  • 1/\sqrt{5},5
If { C }_{ r }=\begin{pmatrix} n \\ r \end{pmatrix}, then sum of series { \dfrac{{C }_{ 0 }^{ 2 }}{1}}+\dfrac{{ C }_{ 1 }^{ 2 }}{2}+\dfrac{{ C }_{ 2 }^{ 2 }}{3}+.... upto (n+1) terms is
  • \cfrac { 1 }{ n+1 } \begin{pmatrix} 2n+1 \\ n+1 \end{pmatrix}
  • \cfrac { 1 }{ 2(n+1) } \begin{pmatrix} 2n+1 \\ n+1 \end{pmatrix}
  • \cfrac { 1 }{ n+1 } \begin{pmatrix} 2n+1 \\ n \end{pmatrix}
  • \cfrac { (2n+1)! }{ { (n+1)! }^{ 2 } }
Value of S=1\times 2\times 3\times 4+2\times 3\times 4\times 5+.......+n(n-1)(n+2)(n+3) is
  • \cfrac { 1 }{ 5 } n(n+1)(n+2)(n+3)(n+4)
  • \cfrac { 1 }{ 5! } ({ _{ }^{ n+3 }{ C } }_{ 5 })
  • \cfrac { 1 }{ 5 }{ _{ }^{ n+4 }{ C } }_{ 4 }
  • None of these
Given that the 4^{th} term in the expansion of { \left( 2+\cfrac { 3x }{ 8 }  \right)  }^{ 10 } has the maximum numerical value, then x can lie in the interval(s)
  • \left( 2,\cfrac { 64 }{ 21 } \right)
  • \left( -\cfrac { 60 }{ 23 } ,-2 \right)
  • \left( -\cfrac { 64 }{ 21 } ,-2 \right)
  • \left( 2,-\cfrac { 60 }{ 23 } \right)
If the third term in the expansion of
{ \left( \cfrac { 1 }{ x } +{ x }^{ \log _{ 2 }{ x }  } \right)  }^{ 5 } is 40 then x equals
  • \dfrac {1}{\sqrt{2}},2
  • \sqrt{2},4
  • \dfrac {1}{\sqrt{2}},4
  • \sqrt{2},\dfrac{1}{\sqrt{2}}
If in the expansion of { \left( \cfrac { 1 }{ x } +x\tan { x }  \right)  }^{ 5 } the ratio to 4th term to the 2nd term is \cfrac { 2 }{ 27 } { \pi  }^{ 4 }, then the value of x can be
  • \cfrac { -\pi }{ 6 }
  • \cfrac { -\pi }{ 3 }
  • \cfrac { \pi }{ 3 }
  • \cfrac { \pi }{ 12 }
If the coefficients of 2nd, 3rd and the 4th terms in the expansion of { \left( 1+x \right)  }^{ n } are in A.P, then value of n is
  • 5
  • 7
  • 11
  • 14
If the middle term of { \left( x+\cfrac { 1 }{ x } \sin ^{ -1 }{ x }  \right)  }^{ 8 } is equal to \dfrac {630}{16}, then value of x is (are)
  • \dfrac {\pi}3
  • \dfrac {\pi}6
  • -\dfrac {\pi}6
  • -\dfrac {\pi}3
Let { S }_{ n }= \sum _{ r=0 }^{ n }{ { (-2) }^{ r } } \left( \cfrac { { _{  }^{ n }{ C } }_{ r } }{ { _{  }^{ r+2 }{ C } }_{ r } }  \right) , then
  • { S }_{ n }=\cfrac { 1 }{ n+1 } if n is odd
  • { S }_{ n }=\cfrac { 1 }{ n+2 } if n is odd
  • { S }_{ n }=\cfrac { 1 }{ n+1 } if n is even
  • { S }_{ n }=\cfrac { 1 }{ n+2 } if n is even
Let {C}_{r} stand for { _{  }^{ n }{ C } }_{ r } and S(n,r)={C}_{0}-{C}_{1}+{C}_{2}-{C}_{3}+....+{ (-1) }^{ r }{ C }_{ r }
  • If S(n,r)=28 then n=9,r=2 or n=9,r=6
  • If S(n,r)=-15, then n=7,r=3
  • S(n,n)=0
  • none of these
Value of
\sum _{ k=1 }^{ \infty  } \sum _{ r=0 }^{ k }{ \cfrac { 1 }{ { 3 }^{ k } }  } ({ _{  }^{ k }{ C } }_{ r }) is
  • 2
  • \cfrac{2}{3}
  • \cfrac{1}{3}
  • none of these
Value of \sum { \sum _{ 0\le r<s\le n }^{  }{ { (r+s)\left( { C }_{ r }+{ C }_{ s } \right)  }^{ 2 } }  } is
  • n\left[ (n-1)({ _{ }^{ 2n }{ C } }_{ n })+{ 2 }^{ 2n } \right]
  • n\left[ (n+1)({ _{ }^{ 2n }{ C } }_{ n })+{ 2 }^{ 2n } \right]
  • n\left[ { 2 }^{ 2n }-n({ _{ }^{ 2n }{ C } }_{ n }) \right]
  • None of these
If A=^{ 2n }{ { C }_{ 0 } }.^{ 2n }{ { C }_{ 1 } }+^{ 2n }{ { C }_{ 1 } }^{ 2n-1 }{ { C }_{ 1 } }+^{ 2n }{ { C }_{ 2 } }^{ 2n-2 }{ { C }_{ 1 } }+... then A is
  • 0
  • n.2^{2n}
  • { 2 }^{ 10 }-2
  • 1
The coefficient of { x }^{ 9 } in the expansion of { \left( { x }^{ 3 }+\cfrac { 1 }{ { 2 }^{ t } }  \right)  }^{ 11 }, where t=\log _{ \sqrt { 2 }  }{ { (x }^{ \tfrac 32 } } ),
  • -5
  • 330
  • 520
  • 5+\log _{ \sqrt { 2 } }{ (3 } )
Value of \sum { \sum _{ 0\le i<j\le n }^{  }{ { \left( { C }_{ i }+{ C }_{ j } \right)  }^{ 2 } }  } is
  • { 2 }^{ 2n }(n+1)({ _{ }^{ 2n }{ C } }_{ n })
  • { 2 }^{ 2n }+(n+1)({ _{ }^{ 2n }{ C } }_{ n })
  • { 2 }^{ 2n-1 }+(n+1)({ _{ }^{ 2n }{ C } }_{ n })
  • none of these
If {x}^{2r} occurs in { \left( x+\cfrac { 2 }{ { x }^{ 2 } }  \right)  }^{ n }, then n-2r must be of the form
  • 3k
  • 3k-1
  • 3k+1
  • 4k\pm 1
Value(s) of x for which the fourth term in the expansion of
{ \left( { \sqrt { x }  }^{ 1/(\log _{ 2 }{ x+1 } ) }+{ x }^{ 1/2 } \right)  }^{ 6 } is 40 is (are)
  • 1/8
  • 2
  • 1/16,2
  • 1/8,4
If the middle term of { \left( x+\cfrac { 1 }{ x } \sin ^{ -1 }{ x }  \right)  }^{ 8 } is \cfrac { 35{ \pi  }^{ 4 } }{ 8 } , then value of x can be
  • \dfrac12
  • \dfrac{\sqrt {3}}2
  • \dfrac1{\sqrt {2}}
  • 1
The number of irrational terms in the expansion of { \left( { 4 }^{ 1/5 }+{ 7 }^{ 1/10 } \right)  }^{ 45 } is
  • 40
  • 5
  • 41
  • none of these
If the expansion of { \left( 1+x \right)  }^{ 50 }, the sum of coefficients of add powers of x is
  • { 2 }^{ 50 }
  • { 2 }^{ 49 }
  • 0
  • None of these
The coefficients of three consecutive terms in the expansion of { (1+x) }^{ n } are in the ratio 5:10:21. find n
  • 5
  • 4
  • 7
  • 8
The coefficient of \displaystyle x^{99} in the polynomial \displaystyle \left ( x-1 \right )\left ( x-2 \right )\left ( x-3 \right )...\left ( x-100 \right ) is
  • 1
  • -5050
  • 5050
  • -1
Value of the expression
\quad { C }_{ 0 }+({ C }_{ 0 }+{ C }_{ 1 })+({ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 })+....+({ C }_{ 0 }+{ C }_{ 1 }+....+{ C }_{ n-1 }) is
  • {2}^{n-1}
  • n{2}^{n-2}
  • n{2}^{n-1}
  • 2n
If { S }_{ n }=\cfrac { 1 }{ n+1 } \sum _{ i=0 }^{ n }{ \begin{pmatrix} n \\ i \end{pmatrix} } , then 2{ S }_{ n+1 }-{ S }_{ n } equals


  • =2^{n}[\dfrac{3n-2}{(n+1)(n+2)}]
  • =2^{n}[\dfrac{3n+2}{(n+1)(n+2)}]
  • =2^{n}[\dfrac{3n+2}{(n-1)(n+2)}]
  • 0
In the expansion of \displaystyle \left ( x^{3}+3.2^{-\log_{2}x^{3}} \right )^{11}
  • there appears a term with the power \displaystyle x^{2}
  • there does not appear a term with the power \displaystyle x^{2}
  • there appear a term with the power \displaystyle x^{-3}
  • the ratio of the co-efficient of \displaystyle x^{3} to that of \displaystyle x^{-3} is \displaystyle \frac{1}{3}
If \displaystyle \left ( 1+x+x^{2} \right )^{25}=a_{0}+a_{1}x+a_{2}x^{2}+\cdot \cdot \cdot +a_{50}\cdot x^{50} then \displaystyle a_{0}+a_{2}+a_{4}+\cdot \cdot \cdot +a_{50} is
  • even
  • odd & of the form 3n.
  • odd & of the form (3n-1)
  • Odd & of the form (3n+1)
If \displaystyle \begin{pmatrix} p   \\ q  \end{pmatrix} =0 for \displaystyle p< q p,\displaystyle q\epsilon W then \displaystyle \sum_{r=0}^{\infty} \displaystyle \begin{pmatrix} n \\ 2r \end{pmatrix}
  • \displaystyle 2^{n}
  • \displaystyle 2^{n-1}
  • \displaystyle 2^{2n-1}
  • \displaystyle \hat{2n}C_{n}
Number of terms free from radical sign in the expansion of \displaystyle \left ( 1+3^{1/3}+7^{1/2} \right )^{10} is
  • 4
  • 5
  • 6
  • 8
The sum of the coefficients of all the even powers of x in the expansion of \displaystyle \left ( 2x^{2}-3x+1 \right )^{11} is
  • \displaystyle 2 . 6^{10}
  • \displaystyle 3 . 6^{10}
  • \displaystyle 6^{11}
  • None of the above
Number of rational terms in the expansion of \displaystyle \left ( \sqrt{2}+\sqrt[4]{3} \right )^{100} is
  • 25
  • 26
  • 27
  • 28
The sum of the binomial coefficients of \displaystyle \left [2 x+\frac{1}{x} \right ]^{n} is equal to  value of n is
  • 5
  • 6
  • 7
  • 8
(r + 1)^{th} term in the expansion of (x + a)^n will be
  • ^nC_rx^na^{n-r}
  • ^nC_rx^{n-r}a^{r}
  • ^nC_rx^{n-r}a^{n}
  • ^nC_rx^ra^{n-r}
If coefficients of x^n in (1+x)^{101}(1-x+x^2)^{100} is non-zero then n cannot be of the form
  • 3t+1
  • 3t
  • 3t+2
  • 4t+1
\displaystyle \binom{n}{o}+\binom{n}{1}+\binom{n}{2}+.........+\binom{n}{n}=
  • \displaystyle 2^{n-1}
  • \displaystyle ^{2n}C_{n}
  • \displaystyle 2^n
  • \displaystyle 2^{n+1}
Find the \displaystyle 7^{th} term of \displaystyle \left ( 3x^{2}-\frac{1}{3}\right)^{10}.
  • \displaystyle \frac{66}{3}x^{7}
  • \displaystyle \frac{70}{3}x^{7}
  • \displaystyle \frac{66}{3}x^{8}
  • \displaystyle \frac{70}{3}x^{8}
The value of \displaystyle 2\sum_{r=0}^{n}a_{2r-1} is
  • \displaystyle 9^{n}-1
  • \displaystyle 9^{n}+1
  • \displaystyle 9^{n}-2
  • \displaystyle 9^{n}+2
If {C}_{r} stands for ^{n}{C}_{r}, then the sum of the series \displaystyle\frac { 2\left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) ! }{ n! } \left[ { C }_{ 0 }^{ 2 }-2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }-...+{ \left( -1 \right)  }^{ n }\left( n+1 \right) { C }_{ n }^{ 2 } \right] where n is an even positive integer, is
  • 0
  • { \left( -1 \right)  }^{ n/2 }\left( n+1 \right)
  • { \left( -1 \right)  }^{ n/2 }\left( n+2 \right)
  • { \left( -1 \right)  }^{ n }n
Find the middle terms in the expansion of \displaystyle \left ( 2x^{2}-\frac{1}{x} \right )^{7}
  • \displaystyle -560x^{5},\:280x^{2}
  • \displaystyle -280x^{5},\:560x^{2}
  • \displaystyle 560x^{5},\:-280x^{2}
  • \displaystyle 280x^{5},\:-560x^{2}
The number of terms in the expansion of ( 1 + 5\sqrt 2 x)^9 + ( 1 -5\sqrt 2 x)^9 is
  • 5
  • 7
  • 9
  • 10
In the expansion of (1 + x)^n, the sum of coefficients of odd powers of x is
  • 2^n+1
  • 2^n-1
  • 2^n
  • 2^{n-1}
If (1+x)^n=C_0+C_1x+C_2x^2+.....+C_nx^2, then the value of C_0+C_2+C_4+ ..... is
  • 2^{n-1}
  • 2^n-1
  • 2^n
  • 2^{n-1}-1
Which term in the expansion of \left (\displaystyle \frac {x}{3}-\frac {2}{x^2}\right )^{10} contains x^4?
  • 1
  • 3
  • 4
  • 5
If C_0, C_1, C_2, ..............C_n are binomial coefficients then \displaystyle \frac {1}{n!0!}+\frac {1}{(n-1)!1!}+\frac {1}{(n-2)!2!}+ ....+\frac {1}{0!n!} is equal to
  • 2^n
  • \displaystyle \frac {2^{n-1}}{n!}
  • \displaystyle \frac {2^n}{n!}
  • none of these
If the sum of the coefficients in the expansion of (1 -3x + 10x^2)^n is a and if the sum of the coefficients in the expansion of (1 + x^2)^n is b, then
  • a = 3b
  • a = b^3
  • b=a^3
  • none of these
\binom{n}{0}+2\binom{n}{1}+2^2\binom{n}{2}+ .... +2^n\binom{n}{n} is equal to
  • 2^n
  • 0
  • 3^n
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers