Processing math: 82%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 6 - MCQExams.com

The sum of all the coefficients in the binomial expansion of (x2+x3)319 is
  • 1
  • (2)318
  • (2)319
  • 0
10C1+10C3+10C5+10C7+10C9=
  • 29
  • 210
  • 2101
  • None of these
The value of 3nC08nC1+13nC218nC3+.....+n terms is
  • 0
  • 3n
  • 5n
  • none of these
The sum of the coefficients in the expansion of (x+2y+z)10 is
  • 210
  • 410
  • 310
  • 1
If the 9th term in the expansion of (1x2+x2log2x)12 is equal to 495, then the value of x can be
  • 1
  • An integer greater than 1
  • a fraction
  • an irrational number
In the expansion of [71/3+111/9]6561, the number of terms free from radicals is
  • 730
  • 729
  • 725
  • 750
In the expression of (3174+32)15, the 11th term is a
  • positive integer
  • positive irrational number
  • negative integer
  • negative irrational number
The total number of distinct terms in the expansion of (x+a)100+(xa)100 after simplification is
  • 50
  • 202
  • 51
  • none of these
If C0,C1,C2....Cn denote the binomial coefficients in the expansion of (1+x)n , then the value of nr=0(r+1)Cr is
  • n2n
  • (n+1)2n1
  • (n+2)2n1
  • (n+2)2n2
If (1+x2x2)8=a0+a1x+a2x2+....+a16x16 then the sum a1+a3+a5+....+a15 is equal to
  • 27
  • 27
  • 28
  • none of these
The number of terms which are free from radical signs in the expansion of (y15+x110)55 are
  • 5
  • 6
  • 7
  • none of these
If (2x+3x2)6=a0+a1x+a2x2+.....+a12x12, then values of a0 and a6 are
  • 0,6
  • 0,26
  • 1,6
  • 0
If sum of all the coefficients in the expansion of (x3/2+x1/3)n is 128, then the coefficient of x5 is
  • 35
  • 45
  • 7
  • none of these
If the second term of the expansion [a1/13+aa1]nis14a5/2, then the value of nC3nC2 is
  • 4
  • 3
  • 12
  • 6
The number of real negative terms in the bionomial expansion of (1+ix)4n2,nN,x>0 is
  • n
  • n+1
  • n1
  • 2n
Find 7th term of (4x552x)9
  • 10050x3
  • 10500x3
  • 1050x3
  • 1000x3
Find 28th term of (5x+8y)30
  • 30C27(5x)27(8y)3
  • 30C28(5x)2(8y)28
  • 30C27(5x)3(8y)27
  • 30C28(5x)28(8y)2
If p+q=1, then the value of 15r=015Crp15rqr
  • 1
  • 15
  • 18
  • 20
The value of 10r=1r2.26Cr26Cr1 is-
  • 1100
  • 1300
  • 900
  • 1800
If (x2+1x)n has exactly one middle term which is equal to α.x3 then the value of (α+n) is-         (nN)
  • 18
  • 21
  • 24
  • 26
The number of integral terms in (3+82)64 is-
  • 8
  • 7
  • 9
  • 6
Value of k=1kr=013k(kCr) is
  • 23
  • 43
  • 2
  • 1
Which term is the constant term in the expansion of (2x73x)6 ?
  • 2nd term
  • 3rd term
  • 4th term
  • 5th term
If the middle term in the expansion of (x2+1x)n is 924x6, then n=
  • 10
  • 12
  • 14
  • none of these
The middle term in the expansion of (x+4)4 is:
  • 96x3
  • 96x2
  • 96x2
  • none of the above
Find the term which has the exponent of x as 8 in the expansion of (x523x3x)10
  • T2
  • T3
  • T4
  • Does not exist
Find the coefficient of the term independent of x in the expansion of (6x35x6)12.
  • 12C45864
  • 12C55765
  • 12C46854
  • None of these
If the coefficients of 6th and 5th terms of expansion (1+x)n are in the ratio 7:5, then find the value of n.
  • 11
  • 12
  • 10
  • 9
If 'p' and 'q' are the coefficients of xa and xb respectively in (1+x)a+b, then
  • 2p=q
  • p+q=0
  • p=q
  • p=2q
If sum of the first 3 coefficients is 16 in the expansion (x+1x3)n, then find n.
  • 10
  • 8
  • 5
  • 4
16r=216Cr=
  • 21515
  • 21616
  • 21617
  • 21717
The value of the sum (nC1)2+(nC2)2+(nC3)2++(nCn)2 is
  • (2nCn)2
  • 2nCnn
  • 2nCn+1
  • 2nCn1
If the magnitude of the coefficient of x7 in the expansion of (ax2+1bx)8, where a, b are positive numbers, is eual to the magnitude of the coefficient of x7 in the expansion of (ax21bx)8, then a and b are connected by the relation
  • ab=1
  • ab=2
  • a2b=1
  • ab2=2
The value of 15r=1r2(15Cr15Cr1) is equal to:
  • 680
  • 1085
  • 560
  • 1240
The middle term in the expansion of (1+x)2n is
  • 1.3.5...(2n1)nxn
  • 1.3.5...(2n1)n!2n1xn
  • 1.3.5...(2n1)n!xn
  • 1.3.5...(2n1)n!2nxn
The number of irrational terms in the binomial expansion of (31/5+71/3)100 is
  • 90
  • 88
  • 94
  • 95
If in the expansion of (a2b)n, the sum of the 5th and 6th term is zero, then the value of ab is
  • n45
  • 2(n4)5
  • 5n4
  • 52n4
The middle term in the expansion of (x1x)18 is
  • 18C9
  • 18C9
  • 18C10
  • 18C10
If (1+x+x2+x3)5=15k=0akxk then 7k=0a2k is equal to
  • 128
  • 256
  • 512
  • 1024
Find the sum of coefficients in the expansion of (12x+4x2)n given that the number of terms are 28
  • 27
  • 81
  • 243
  • 729
(x+1)n=C0+C1x1+C2x2....Cnxn.
Find the value of C0+C1+C2.....+Cn
  • n!
  • (n!)2
  • 2n
  • n!2n
Let nN, such that (1+x+x2)n=a0+a1x+a2x2...a2nx2n The value of ar when (0r2n)
  • a2nr
  • anr
  • a2n
  • n.a2n1
Find the number of integral terms in the expansion of (3+85)256
  • 33
  • 34
  • 35
  • 32
Find the coefficient of x^n in expansion of (1 + x) (1 - x)^n.
  • (n - 1)
  • (-1)^{n - 1} n
  • (-1)^{n - 1}(n - 1)^2
  • (-1)^n (1- n)
The general term in (x + y)^n is given by
T_{r+1}= 
  • ^{n}C_{r+1}
  • ^nC_{n-r-1}
  • ^{n-1}C_r
  • none
If the middle term of \left(\dfrac 1x +x\sin x\right)^{10} is equal to 7\dfrac 78, then the principal value of x is: 
  • 60^0
  • 30^0
  • 45^0
  • 90^0
If the value of
C_0+2 \cdot C_1 + 3 \cdot C_2+........+(n+1)\cdot C_n=576, then n is ______.
  • 7
  • 5
  • 6
  • 9
The value of a_0 ^2-a_1 ^2+a_2 ^2....a_{2n} ^2 is
  • a_n
  • 2a_n
  • 3a_n
  • \dfrac {n+1}2 (a_0+a_1+a_2...a_{2n})

The first three terms in the expansion of (1+a)^n are t_1=1,t_2=-18,t_3=144.

Use the general term to determine a and n.

  • a=-3,n=9
  • a=-2,n=9
  • a=-3,n=8
  • a=-2,n=8
The middle term of expansion of \left (\dfrac {10}{x} + \dfrac {x}{10}\right )^{10}
  • ^{7}C_{5}
  • ^{8}C_{5}
  • ^{9}C_{5}
  • ^{10}C_{5}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers