Explanation
Hence,$${ (x+a) }^{ 100 }+{ (x-a) }^{ 100 }$$ has
$$\left( \frac { 100 }{ 2 } +1 \right) terms=51$$ terms therefore Number of terms$$=51$$terms
Consider given the binomial expression,
$$ {{\sum\limits_{r=2}^{16}{^{16}{{C}_{r}}=}}^{16}}{{C}_{2}}{{+}^{16}}{{C}_{3}}{{+}^{16}}{{C}_{3}}+{{.......}^{16}}{{C}_{16}} $$
$$ ={{2}^{16}}-17 $$
The first three terms in the expansion of $$(1+a)^n$$ are $$t_1=1,t_2=-18,t_3=144$$.
Use the general term to determine a and n.
Please disable the adBlock and continue. Thank you.