Explanation
Hence,{ (x+a) }^{ 100 }+{ (x-a) }^{ 100 } has
\left( \frac { 100 }{ 2 } +1 \right) terms=51 terms therefore Number of terms=51terms
Consider given the binomial expression,
{{\sum\limits_{r=2}^{16}{^{16}{{C}_{r}}=}}^{16}}{{C}_{2}}{{+}^{16}}{{C}_{3}}{{+}^{16}}{{C}_{3}}+{{.......}^{16}}{{C}_{16}}
={{2}^{16}}-17
The first three terms in the expansion of (1+a)^n are t_1=1,t_2=-18,t_3=144.
Use the general term to determine a and n.
Please disable the adBlock and continue. Thank you.