Processing math: 3%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 6 - MCQExams.com

The sum of all the coefficients in the binomial expansion of (x2+x3)319 is
  • 1
  • (2)318
  • (2)319
  • 0
10C1+10C3+10C5+10C7+10C9=
  • 29
  • 210
  • 2101
  • None of these
The value of 3nC08nC1+13nC218nC3+.....+n terms is
  • 0
  • 3n
  • 5n
  • none of these
The sum of the coefficients in the expansion of (x + 2y + z)^{10} is
  • 2^{10}
  • 4^{10}
  • 3^{10}
  • 1
If the 9^{th} term in the expansion of \left(\displaystyle \frac{1}{x^2} + \frac{x}{2} log_2 x \right) ^{12} is equal to 495, then the value of x can be
  • 1
  • An integer greater than 1
  • a fraction
  • an irrational number
In the expansion of \displaystyle \left [ 7^{1/3}+11^{1/9} \right ]^{6561}, the number of terms free from radicals is
  • 730
  • 729
  • 725
  • 750
In the expression of \displaystyle \left ( 3-\sqrt{\frac{17}{4}+3\sqrt{2}} \right )^{15}, the 11th term is a
  • positive integer
  • positive irrational number
  • negative integer
  • negative irrational number
The total number of distinct terms in the expansion of \displaystyle \left ( x+a \right )^{100}+\left ( x-a \right )^{100} after simplification is
  • 50
  • 202
  • 51
  • none\ of\ these
If C_0 , C_1 , C_2 .... C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of \displaystyle \sum_{r=0}^n(r+1)C_r is
  • n 2^n
  • (n+1)2^{n-1}
  • (n+2)2^{n-1}
  • (n+2)2^{n-2}
If (1+x-2x^2)^8= a_0 + a_1x + a_2x^2 +....+ a_{16}x^{16} then the sum a_1+a_3+a_5+ .... +a_{15} is equal to
  • -2^7
  • 2^7
  • 2^8
  • none of these
The number of terms which are free from radical signs in the expansion of (y^{\frac 15} + x^{\frac 1{10}})^{55} are
  • 5
  • 6
  • 7
  • none of these
If (2x+3x^2)^6 = a_0 + a_1x + a_2x^2+.....+ a_{12} x^{12}, then values of a_0 and a_6 are
  • 0, 6
  • 0, 2^6
  • 1, 6
  • 0
If sum of all the coefficients in the expansion of (x^{3/2} + x^{1/3})^n is 128, then the coefficient of x^5 is
  • 35
  • 45
  • 7
  • none of these
If the second term of the expansion \displaystyle \left [ a^{1/13}+\frac{a}{\sqrt{a^{-1}}} \right ]^{n}\: \: is\: \: 14a^{5/2}, then the value of \displaystyle \frac{^{n}{C}_{3}}{^{n}{C}_{2}} is
  • 4
  • 3
  • 12
  • 6
The number of real negative terms in the bionomial expansion of (1+ix)^{4n-2} ,n \in N,x>0 is
  • n
  • n+1
  • n-1
  • 2n
Find 7^{th} term of \displaystyle \left ( \frac{4x}{5}-\frac{5}{2x} \right )^{9}
  • \dfrac{10050}{x^{3}}
  • \dfrac{10500}{x^{3}}
  • \dfrac{1050}{x^{3}}
  • \dfrac{1000}{x^{3}}
Find 28^{th} term of \left ( 5x+8y \right )^{30}
  • ^{30}\textrm{C}_{27}\left ( 5x \right )^{27}\left ( 8y \right )^{3}
  • ^{30}\textrm{C}_{28}\left ( 5x \right )^{2}\left ( 8y \right )^{28}
  • ^{30}\textrm{C}_{27}\left ( 5x \right )^{3}\left ( 8y \right )^{27}
  • ^{30}\textrm{C}_{28}\left ( 5x \right )^{28}\left ( 8y \right )^{2}
If p+q=1, then the value of \displaystyle \sum _{ r=0 }^{ 15 }{ { _{  }^{ 15 }{ C } }_{ r } } { p }^{ 15-r }{ q }^{ r }
  • 1
  • 15
  • 18
  • 20
The value of  \sum _{ r=1 }^{ 10 }{ { r }^{ 2 }.\cfrac { { _{  }^{ 26 }{ C } }_{ r } }{ { _{  }^{ 26 }{ C } }_{ r-1 } }  } is-
  • 1100
  • 1300
  • 900
  • 1800
If { \left( { x }^{ 2 }+\cfrac { 1 }{ { x }}  \right)  }^{ n } has exactly one middle term which is equal to \alpha.{x}^{3} then the value of (\alpha+n) is-         (n\in N)
  • 18
  • 21
  • 24
  • 26
The number of integral terms in {(\sqrt {3}+\sqrt [ 8 ]{ 2 } )}^{64} is-
  • 8
  • 7
  • 9
  • 6
Value of \displaystyle \sum_{k=1}^{\infty} \sum _{r=0}^{k} \frac{1}{3^{k}} (^{k}C_{r}) is
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{4}{3}
  • 2
  • 1
Which term is the constant term in the expansion of \left ( 2x\, -\, \frac{7}{3x} \right )^6 ?
  • 2nd term
  • 3rd term
  • 4th term
  • 5th term
If the middle term in the expansion of \left (x^2+\dfrac {1}{x}\right )^n is 924x^6, then n=
  • 10
  • 12
  • 14
  • none\ of\ these
The middle term in the expansion of (x + 4)^4 is:
  • 96x^3
  • 96x^2
  • -96x^2
  • none of the above
Find the term which has the exponent of x as 8 in the expansion of \displaystyle\left(x^{\displaystyle\frac{5}{2}}-\frac{3}{x^3\sqrt{x}}\right)^{10}
  • T_2
  • T_3
  • T_4
  • Does not exist
Find the coefficient of the term independent of x in the expansion of \displaystyle\left(6x^3-\frac{5}{x^6}\right)^{12}.
  • ^{12}C_45^86^4
  • ^{12}C_55^76^5
  • ^{12}C_46^85^4
  • None of these
If the coefficients of 6th and 5th terms of expansion (1+x)^n are in the ratio 7:5, then find the value of n.
  • 11
  • 12
  • 10
  • 9
If 'p' and 'q' are the coefficients of x^a and x^b respectively in (1+x)^{a+b}, then
  • 2p=q
  • p+q=0
  • p=q
  • p=2q
If sum of the first 3 coefficients is 16 in the expansion \displaystyle\left(x+\frac{1}{x^3}\right)^n, then find n.
  • 10
  • 8
  • 5
  • 4
\displaystyle\sum_{r=2}^{16}{^{16}C_r}=
  • 2^{15}-15
  • 2^{16}-16
  • 2^{16}-17
  • 2^{17}-17
The value of the sum { \left( _{  }^{ n }{ { C }_{ 1 } } \right)  }^{ 2 }+{ \left( _{  }^{ n }{ { C }_{ 2 } } \right)  }^{ 2 }+{ \left( _{  }^{ n }{ { C }_{ 3 } } \right)  }^{ 2 }+\dots +{ \left( _{  }^{ n }{ { C }_{ n } } \right)  }^{ 2 } is
  • { \left( _{ }^{ 2n }{ { C }_{ n } } \right) }^{ 2 }
  • ^{ 2n }{ { Cn }_{ n } }
  • ^{ 2n }{ { C }_{ n } }+1
  • ^{ 2n }{ { C }_{ n } }-1
If the magnitude of the coefficient of \displaystyle { x }^{ 7 } in the expansion of \displaystyle { \left( { ax }^{ 2 }+\frac { 1 }{ bx }  \right)  }^{ 8 }, where a, b are positive numbers, is eual to the magnitude of the coefficient of \displaystyle { x }^{ -7 } in the expansion of \displaystyle { \left( { ax }^{ 2 }-\frac { 1 }{ bx }  \right)  }^{ 8 }, then a and b are connected by the relation
  • \displaystyle ab=1
  • \displaystyle ab=2
  • \displaystyle { a }^{ 2 }b=1
  • \displaystyle { ab }^{ 2 }=2
The value of \displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {^{15}C_{r}}{^{15}C_{r - 1}}\right ) is equal to:
  • 680
  • 1085
  • 560
  • 1240
The middle term in the expansion of (1 + x)^{2n} is
  • \dfrac {1.3.5...(2n - 1)}{n}x^{n}
  • \dfrac {1.3.5...(2n - 1)}{n!}2^{n - 1}x^{n}
  • \dfrac {1.3.5...(2n - 1)}{n!}x^{n}
  • \dfrac {1.3.5...(2n - 1)}{n!}2^{n}x^{n}
The number of irrational terms in the binomial expansion of (3^{1/5}+7^{1/3})^{100} is
  • 90
  • 88
  • 94
  • 95
If in the expansion of (a-2b)^n, the sum of the 5th and 6th term is zero, then the value of \dfrac{a}{b} is
  • \dfrac{n-4}{5}
  • \dfrac{2(n-4)}{5}
  • \dfrac{5}{n-4}
  • \dfrac{5}{2n-4}
The middle term in the expansion of \left (x - \dfrac {1}{x}\right )^{18} is
  • ^{18}C_{9}
  • -^{18}C_{9}
  • ^{18}C_{10}
  • -^{18}C_{10}
If { \left( 1+x+{ x }^{ 2 }+{ x }^{ 3 } \right)  }^{ 5 }=\displaystyle\sum _{ k=0 }^{ 15 }{ { a }_{ k }{ x }^{ k } } then \displaystyle\sum _{ k=0 }^{ 7 }{ { a }_{ 2k } } is equal to
  • 128
  • 256
  • 512
  • 1024
Find the sum of coefficients in the expansion of \left(1-\dfrac 2x+\dfrac {4}{x^2}\right)^n given that the number of terms are 28
  • 27
  • 81
  • 243
  • 729
(x+1)^n=C_0+C_1x^1+C_2x^2....C_nx^n.
Find the value of C_0+C_1+C_2.....+C_n
  • n!
  • (n!)^2
  • 2^n
  • n!-2^n
Let n \in N, such that (1+x+x^2)^n=a_0+a_1x+a_2x^2...a_{2n}x^{2n} The value of a_r when (0\leq r\leq 2n)
  • a_{2n-r}
  • a_{n-r}
  • a_{2n}
  • n.a_{2n-1}
Find the number of integral terms in the expansion of (\sqrt 3 + \sqrt[8]{5})^{256}
  • 33
  • 34
  • 35
  • 32
Find the coefficient of x^n in expansion of (1 + x) (1 - x)^n.
  • (n - 1)
  • (-1)^{n - 1} n
  • (-1)^{n - 1}(n - 1)^2
  • (-1)^n (1- n)
The general term in (x + y)^n is given by
T_{r+1}= 
  • ^{n}C_{r+1}
  • ^nC_{n-r-1}
  • ^{n-1}C_r
  • none
If the middle term of \left(\dfrac 1x +x\sin x\right)^{10} is equal to 7\dfrac 78, then the principal value of x is: 
  • 60^0
  • 30^0
  • 45^0
  • 90^0
If the value of
C_0+2 \cdot C_1 + 3 \cdot C_2+........+(n+1)\cdot C_n=576, then n is ______.
  • 7
  • 5
  • 6
  • 9
The value of a_0 ^2-a_1 ^2+a_2 ^2....a_{2n} ^2 is
  • a_n
  • 2a_n
  • 3a_n
  • \dfrac {n+1}2 (a_0+a_1+a_2...a_{2n})

The first three terms in the expansion of (1+a)^n are t_1=1,t_2=-18,t_3=144.

Use the general term to determine a and n.

  • a=-3,n=9
  • a=-2,n=9
  • a=-3,n=8
  • a=-2,n=8
The middle term of expansion of \left (\dfrac {10}{x} + \dfrac {x}{10}\right )^{10}
  • ^{7}C_{5}
  • ^{8}C_{5}
  • ^{9}C_{5}
  • ^{10}C_{5}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers