CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 7 - MCQExams.com

The value of $$C_1 ^2+C_2 ^2....+C_n ^2$$ (where $$C_i$$ is the $$i^{th}$$ coefficient of $$(1+x)^n$$ expansion), is:
  • $$\dfrac {n^n}{n!}$$
  • $$\dfrac {2n!}{n!n!}$$
  • $$\dfrac {2n!}{n!}$$
  • $$\dfrac {n!\times2^n}{2n!}$$
If $$f(n)=\sum_{s=1}^n \sum_{r=s}^n \:^nC_r \:^rC_s$$, then $$f(3)=$$
  • $$27$$
  • $$19$$
  • $$1$$
  • $$5$$
The value of $$(n+2)C_02^{n+1}-(n+1)C_12^n+nC_22^{n-1}+....$$ is equal to:
$$(C_r=\:^nC_r)$$
  • $$4n$$
  • $$4$$
  • $$2n+4$$
  • $$4+4n$$
If $$^{n-1}C_{r}=(k^2-3)\:^nC_{r+1}$$, then $$k\:\:\epsilon$$
  • $$(-\infty,-2]$$
  • $$[2,\infty)$$
  • $$[-\sqrt 3,\sqrt 3]$$
  • $$(\sqrt 3,2]$$
If $$P_n$$ denotes the product of all the coefficients in the expansion of $$(1+x)^n$$, then $$\dfrac {P_{n+1}}{P_n}$$ is equal to:
  • $$\dfrac {(n+2)^n}{n!}$$
  • $$\dfrac {(n+1)^{n+1}}{n+1!}$$
  • $$\dfrac {(n+1)^{n+1}}{n!}$$
  • $$\dfrac {(n+1)^n}{n+1!}$$
The value of $$\displaystyle \:^{50}C_4+\sum_{r=1}^6 \:^{56-r}C_3$$ is
  • $$\:^{55}C_4$$
  • $$\:^{55}C_3$$
  • $$\:^{56}C_3$$
  • $$\:^{56}C_4$$
The coefficient of $$x^{53}$$ in the following expansions.
$$\displaystyle \sum_{m=0}^{100} \,^{100}C_m(x-3)^{100-m}\cdot 2^m$$ is
  • $$^{100}C _{47}$$
  • $$^{100}C _{53}$$
  • $$^{-100}C _{53}$$
  • $$^{-100}C _{100}$$
The coefficient of $$x^{2012}$$ in $$\dfrac{1+x}{(1+x^2)(1-x)}$$ is.
  • 1
  • 2
  • 3
  • 4
Let $$n$$ be a positive integer and, $${ \left( 1+x \right)  }^{ n }={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+\dots +{ a }_{ n }{ x }^{ n }$$. What is $${ a }_{ 0 }+{ a }_{ 1 }+{ a }_{ 2 }+\dots +{ a }_{ n }$$ equal to?
  • $$1$$
  • $${ 2 }^{ n }$$
  • $${ 2 }^{ n-1 }$$
  • $${ 2 }^{ n+1 }$$
$$5^{th}$$ term from the end in the expansion of $$\left( \dfrac{x^2}{2} - \dfrac{2}{x^2} \right )^{12}$$ is
  • $$-7920x^{-4}$$
  • $$7920x^{4}$$
  • $$7920x^{-4}$$
  • $$-7920x^{4}$$
Consider the expansion of $$(1+x)^{2n+1}$$
The average of the coefficients of the two middle terms in the expansion is
  • $$^{2n+1}C_{n+2}$$
  • $$^{2n+1}C_{n}$$
  • $$^{2n+1}C_{n-1}$$
  • $$^{2n}C_{n+1}$$
In the expansion of $$\left( x^3 - \dfrac{1}{x^2} \right )^n , n \in N$$, if the sum of the coefficient of $$x^5$$ and $$x^{10}$$ is $$0$$, then $$n$$ is :
  • $$25$$
  • $$20$$
  • $$15$$
  • None of these
The value of $${ }^nC_0 - { }^nC_1 + { }^n C_2 - .... + (-1)^{n^n}C_n$$ is:
  • $$1$$
  • $$0$$
  • $$2^n$$
  • $$n$$
The value of the expression $${ _{  }^{ k-1 }{ C } }_{ k-1 }+{ _{  }^{ k }{ C } }_{ k-1 }+....{ _{  }^{ n+k-2 }{ C } }_{ k-1 }$$ is given by :
  • $${ _{ }^{ n+k-1 }{ C } }_{ k-1 }$$
  • $${ _{ }^{ n+k-1 }{ C } }_{ k }$$
  • $${ _{ }^{ n+k }{ C } }_{ k }$$
  • None of these
How many terms are there in the expansion of $${ \left( 1+2x+{ x }^{ 2 } \right)  }^{ 10 }$$?
  • $$11$$
  • $$20$$
  • $$21$$
  • $$30$$
Consider the expansion of $$(1+x)^{2n+1}$$
The sum of the coefficients of all the terms in the expansion is
  • $$2^{2n-1}$$
  • $$4^{n-1}$$
  • $$2\times 4^n$$
  • None of the above
What is n equal to ? 
  • $$5$$
  • $$10$$
  • $$15$$
  • None of the above
In the expansion of $$\left (x + \dfrac {1}{x}\right )^{n}$$, then the coefficient of the term indepenent of x is
  • $$\dfrac {n!}{(r!)^{2}}$$
  • $$\dfrac {n!}{(r + 1)! (r - 1)!}$$
  • $$\dfrac {n!}{\left (\dfrac {n + r}{2}\right )! \left (\dfrac {n - r}{2}\right )!}$$
  • $$\dfrac {n!}{\left [\left (\dfrac {n}{2}\right )!\right ]^{2}}$$
The sum of the series $$^{20}C_0 - \,^{20}C_1+\,^{20}C_2-\,^{20}C_3+...+\,^{20}C_{10}$$ is 
  • $$-^{20}C_{10}$$
  • $$\dfrac{1}{2}\,^{20}C_{10}$$
  • $$0$$
  • $$^{20}C_{10}$$
If $$T_r=^{2016}C_rx^{2016-r}$$, for $$r=0, 1, ,....2016$$, then $$(T_0 - T_2+T_4....+T_{2016})^2+(T_1-T_3+T_5....T_{2015})^2$$ is equal to - 
  • $$(X^2-1)^{1008}$$
  • $$(X+1)^{2016}$$
  • $$(X^2-1)^{2016}$$
  • $$(X^2+1)^{2016}$$
If $$C_{0}, C_{1}, C_{2}, ...., C_{n}$$ are binomial coefficients of order $$n$$, then the value of $$\dfrac {C_{1}}{2} + \dfrac {C_{3}}{4} + \dfrac {C_{5}}{6} + .... =$$
  • $$\dfrac {2^{n} + 1}{n + 1}$$
  • $$\dfrac {2^{n} - 1}{n + 1}$$
  • $$\dfrac {2^{n} + 1}{n - 1}$$
  • $$\dfrac {2^{n}}{n + 1}$$
The total number of terms in the expansion of $$(x + a)^{47} - (x - a)^{47}$$ after simplification is
  • 24
  • 47
  • 48
  • 96
Let $$((1 + x) + x^{2})^{9} = a_{0} + a_{1}x + a_{2}x^{2} + ..... + a_{18}x^{18}$$. Then
  • $$a_{0} + a_{2} + ..... + a_{18} = a_{1} + a_{3} + ..... + a_{17}$$
  • $$a_{0} + a_{2} + ..... + a_{18}$$ is even
  • $$a_{0} + a_{2} + ..... + a_{18}$$ is divisible by $$9$$
  • $$a_{0} + a_{2} + ..... + a_{18}$$ is divisible by $$3$$ but not by $$9$$
Let $$n \ge 5$$ and $$b \neq 0$$. In the binomial expansion of $${ \left( a-b \right)  }^{ n }$$, the sum of the 5th and 6th terms is zero then $${ a }/{ b }$$ equals
  • $$\dfrac { 5 }{ n-4 } $$
  • $$\dfrac { 1 }{ 5\left( n-4 \right) } $$
  • $$\dfrac{n-5}{6}$$
  • $$\dfrac{n-4}{5}$$
In the expansion of $${ \left( 3x-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ 10 }$$, the $$5^{th}$$ term from the end is
  • $$\cfrac { 16486 }{ { x }^{ 8 } } $$
  • $$\cfrac { 17010 }{ { x }^{ 8 } } $$
  • $$\cfrac { 13486 }{ { x }^{ 8 } } $$
  • None of these
The coefficient of $$x^{49}$$ in the product $$(x - 1) (x - 2) (x - 3) .... (x - 50)$$ is
  • $$-2250$$
  • $$-1275$$
  • $$1275$$
  • $$2250$$
  • $$-49$$
If $$C_0, C_1, C_2, C_3, .... $$ are binomial coefficients in the expansion of $$ ( 1+x)^n $$ , then $$ \dfrac {C_0}{3} - \dfrac {C_1}{4} + \dfrac{}{} - \dfrac{}{} + ... $$ is equal to :
  • $$ \dfrac{1}{n+1} - \dfrac{2}{n+2} + \dfrac{1}{n+3} $$
  • $$ \dfrac{1}{n+1} + \dfrac{2}{n+2} - \dfrac{3}{n+3} $$
  • $$ \dfrac{1}{n+2} - \dfrac{1}{n+1} + \dfrac{1}{n+3} $$
  • $$ \dfrac{2}{n+1} - \dfrac{1}{n+2} + \dfrac{2}{n+3} $$
  • $$ \dfrac{1}{n+2} - \dfrac{2}{n+1} + \dfrac{3}{n+3} $$
The value of $$r$$ for which the coefficients of $$(r-5)$$th and $$(3r+1)$$th terms in the expansion of $${(1+x)}^{1/2}$$ are equal, is
  • $$4$$
  • $$9$$
  • $$12$$
  • None of these
If $$(1 + x + x^{2})^{n} = 1 + a_{1}x + a_{2}x^{2} + ... + a_{2n}x^{2n}$$, then $$2a_{1} - 3a_{2} + ... -(2n + 1)a_{2n}$$ is equal to
  • $$n$$
  • $$-n$$
  • $$n + 1$$
  • $$-n - 1$$
  • $$-n + 1$$
The middle term in the expansion of $$\left( \dfrac{10}{x} + \dfrac{x}{10} \right )^{10}$$ is
  • $$^{10}C_5$$
  • $$^{10}C_6$$
  • $$^{10}C_5 \dfrac{1}{x^{10}}$$
  • $$^{10}C_5 x^{10}$$
  • $$^{10}C_5 10^{10}$$
If the term free from $$x$$ in the expansion of $$\left (\sqrt {x} - \dfrac {k}{x^{2}}\right )^{10}$$ is $$405$$, then the value of $$k$$ is
  • $$\pm 1$$
  • $$\pm 3$$
  • $$\pm 4$$
  • $$\pm 2$$
Sum of coefficients of the last $$6$$ terms in the expansion of $${ \left( 1+x \right)  }^{ 11 }$$ when the expansion is in ascending powers of $$x$$, is
  • $$2048$$
  • $$32$$
  • $$512$$
  • $$64$$
  • $$1024$$
If $${ C }_{ 0 },{ C }_{ 1 },{ C }_{ 2 },\dots ,{ C }_{ 15 }$$ are binomial coefficients in $${ \left( 1+x \right)  }^{ 15 }$$, then $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +2\dfrac { { C }_{ 2 } }{ { C }_{ 1 } } +3\dfrac { { C }_{ 3 } }{ { C }_{ 2 } } +\cdots +15\dfrac { { C }_{ 15 } }{ { C }_{ 14 } } $$ is equal to
  • $$60$$
  • $$120$$
  • $$64$$
  • $$124$$
  • $$144$$
The middle term in the expansion of $${ \left( 1+x \right)  }^{ 2n }$$ is
  • $$\cfrac { 1.3.5....(2n-1){ 2 }^{ n } }{ n! } $$
  • $$\cfrac { 1.2.3....(2n-1){ 2 }^{ n }{ x }^{ n } }{ n! } $$
  • $$\cfrac { 1.3.5....(2n-1){ x }^{ n } }{ n! } $$
  • $$\cfrac { 1.3.5....(2n-1){ 2 }^{ n }{ x }^{ n } }{ n! } $$
If $$n\epsilon N$$ and $$(1 + 4x + 4x^{2})^{n} = \displaystyle \sum_{r = 0}^{r = 2n} a_{r}x^{r}$$ then value of $$2\displaystyle \sum_{r = 0}^{n}a_{2r}$$ equals
  • $$9^{n} - 1$$
  • $$9^{n} + 1$$
  • $$3^{n }+ 1$$
  • $$3^{n} - 1$$
The sum of the co-efficients of all odd degree terms in the expansion of $$\left(x + \sqrt {x^{3} - 1}\right)^{5} + (x - \sqrt {x^{3} - 1})^{5}, (x > 1)$$ is
  • $$1$$
  • $$2$$
  • $$-1$$
  • $$0$$
If $${C}_{r}$$ denotes the binomial coefficient $${ _{  }^{ n }{ C } }_{ r }$$ then $$\left( -1 \right) { C }_{ 0 }^{ 2 }+2{ C }_{ 1 }^{ 2 }+5{ C }_{ 2 }^{ 2 }+......(3n-1){ C }_{ n }^{ 2 }=\quad $$
  • $$\left( 3n-2 \right) { _{ }^{ 2n }{ C } }_{ n }$$
  • $$\left( \cfrac { 3n-2 }{ 2 } \right) { _{ }^{ 2n }{ C } }_{ n }$$
  • $$\left( 5+3n \right) { _{ }^{ 2n }{ C } }_{ n }$$
  • $$\left( \cfrac { 3n-5 }{ 2 } \right) { _{ }^{ 2n }{ C } }_{ n+1 }$$
Given $$(1-2x+5x^2-10x^3)(1+x)^n=1+a_1x+a_2x^2+...$$ and that $$a_1^2=2a_2$$ then the value of $$n$$ is-
  • 6
  • 2
  • 5
  • 3
If $${ C }_{ 0 },{ C }_{ 1 },{ C }_{ 2 },.....{ C }_{ r }$$ are binomial coefficients in the expansion of $${(1+x)}^{n}$$ then
$${ C }_{ 1 }-\cfrac { { C }_{ 2 } }{ 2 } +\cfrac { { C }_{ 3 } }{ 3 } -\cfrac { { C }_{ 4 } }{ 4 } +....{ \left( -1 \right)  }^{ n-1 }\cfrac { { C }_{ n } }{ n } $$ equals
  • $$\sum _{ r=1 }^{ n }{ { \left( -1 \right) }^{ n-1 } } \cfrac { { C }_{ r } }{ r } $$
  • $$\sum _{ r=1 }^{ n }{ \cfrac { 1 }{ r } } $$
  • $$\sum _{ r=2 }^{ n }{ \cfrac { 1 }{ r-1 } } $$
  • None of these
Prove that the coefficient of middle  term  in the  expansion  of $$ ( 1 + x ) ^{2n} $$  is equal  to the sum  of the coefficient  of two middle  terms in $$(1 + x)^{2n - 1}$$.
  • True
  • False
State true or false.
The middle term in the expansion of 
$$\left(\dfrac{x}{a} \, - \, \dfrac{a}{x}\right)^{10}=-252$$
  • True
  • False
Find the term of the expansion of $$\displaystyle\, \left ( \sqrt[3]{x^{-2}} + x \right )^7$$ containing $$x$$ in the second power.
  • $$T_4$$
  • $$T_5$$
  • $$T_6$$
  • $$T_7$$
Sum of coefficients in the expression of $$(x+2y+z)^{10}$$ is
  • $$2^{10}$$
  • $$3^{10}$$
  • 1
  • None of these
The $$6^{th}$$ coefficient in the expansion of $$\left (2x^2 - \dfrac {1}{3x^2}\right)^{10}$$
  • $$-\dfrac{986}{27}$$
  • $$\dfrac{986}{27}$$
  • $$\dfrac{896}{27}$$
  • $$- \dfrac{896}{27}$$
Prove that $$C_0+C_1+C_2+.....C_n=2^n$$
  • $$2^n$$
  • $$2^{n-1}$$
  • $$2^{n+1}$$
  • None of the above.
In the expansion of $$(\sqrt[5]{3}+\sqrt[7]{2})^{24}$$, the rational term is 
  • $$T_{14}$$
  • $$T_{16}$$
  • $$T_{15}$$
  • $$T_7$$
 the coefficients of $$x^{49}$$ in the polynomial. 
$$\left (x \, - \, \dfrac{C_1}{C_0}\right) \, \left (x \, - \, 2^2 \, \dfrac{C_2}{C_1}\right) \, \left (x \, - \, 3^2 \, \dfrac{C_3}{C_2}\right) \, ..... \,  \, \left (x \, - \, 50^2 \, \dfrac{C_{50}}{C_{49}}\right)$$ is
  • $$50\displaystyle \sum _{ r=1 }^{ 50 }{ r-{ r }^{ 2 } } $$
  • $$51\displaystyle \sum _{ r=1 }^{ 50 }{ { r }^{ 2 } } -\displaystyle \sum _{ r=1 }^{ 50 }{ r } $$
  • $$51\displaystyle \sum _{ r=1 }^{ 50 }{ { r } } -\displaystyle \sum _{ r=1 }^{ 50 }{ r^{ 2 } } $$
  • $$none\ of\ these$$
If the sum of the co-efficient in the expansion of $$(a+b)^n$$ is $$1024$$, then the greatest co-efficient in the expansion is 
  • $$252$$
  • $$352$$
  • $$452$$
  • $$552$$
If $$n\ge 2$$ then $$3.{ C }_{ 1 }-4.{ C }_{ 2 }+5.{ C }_{ 3 }-......+{ \left( -1 \right)  }^{ n-1 }\left( n+2 \right) .{ C }_{ n }$$ is equal to
  • $$-1$$
  • $$2$$
  • $$-2$$
  • $$1$$
The sum $$^{10}C_3 + ^{11}C_3 + ^{12}C_3 + .... + ^{20}C_3$$ is equal to
  • $$^{21}C_4$$
  • $$^{21}C_4 - ^{10}C_4$$
  • $$^{21}C_4 - ^{11}C_4$$
  • $$^{21}C_{17}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers