CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 9 - MCQExams.com

In the expansion of $$(1+x)^{30}$$, the sum of the coefficients of odd powers of $$x$$, is
  • $$2^{30}$$
  • $$2^{31}$$
  • $$0$$
  • $$2^{29}$$
The coefficient of $$x^{10}$$ in the expansion of $$(1+x)^{2}(1+x^{2})^{3}(1+x^{3})^{4}$$ is qual to:
  • $$52$$
  • $$56$$
  • $$50$$
  • $$44$$
If $$P$$ be the sum of odd terms and $$Q$$ be the sum of even terms in the expansion of $$(x+a)^n$$, then $$P ^ { 2 } - Q ^ { 2 } = \left( x ^ { 2 } - a ^ { 2 } \right) ^ { n }$$

  • True
  • False
If $$(1+x-2x^2)^8=1+a_1x+a_2x^2+........ + a_{16}x^{16}$$, then $$a_1+a_3+a_5+......a_{15}$$=
  • $$2^7$$
  • $$-2^7$$
  • $$3^2$$
  • $$4^6$$
The sum of coefficients of the two middle terms in the expansion of $$( 1 + x ) ^ { 2 n - 1 }$$ is equal to
  • $$( 2 n - 1 ) C _ { n }$$
  • $$^ { ( 2 n - 1 ) } C _ { n + 1 }$$
  • $$^ { 2 n } C _ { n - 1 }$$
  • $$^ { 2 n } C _ { n }$$
$$^{2007}C_0-8.^{2007}C_1+13.^{2007}C_2-18.^{2007}C_3+....$$ upto 2008 terms =
  • $$0$$
  • $$2007$$
  • $$-2007$$
  • $$2008$$
 If the coefficients of $$x^{-7}$$ and $$x^{-8}$$ to the expansion of $$\left(2+\dfrac {1}{3x}\right)^{n}$$ are equal then $$n=$$
  • $$56$$
  • $$15$$
  • $$45$$
  • $$55$$
The coefficient of $$x^{4}$$ in the expansion of $$\left(\dfrac{x}{2}-\dfrac{3}{x^{2}}\right)^{10}$$, is
  • $$\dfrac{405}{256}$$
  • $$\dfrac{504}{259}$$
  • $$\dfrac{450}{263}$$
  • $$none\ of\ these$$
The coefficient of $$x^{5}$$ in the expansion of $$(1+x)^{21}+(1+x)^{22}+....+(1+x)^{30}$$ is
  • $$^{51}C_{5}$$
  • $$^{9}C_{5}$$
  • $$^{31}C_{6}-^{21}C_{6}$$
  • $$^{30}C_{5}-^{20}C_{5}$$
Find the middle term in the expansion of $${ \left( \dfrac { { 2x }^{ 2 } }{ 3 } +\dfrac { 3 }{ { 2x }^{ 2 } }  \right)  }^{ 10 }$$ 
  • $$252$$
  • $$248$$
  • $$230$$
  • $$200$$
The coefficient of $${x}^{3}$$ in the expression of $${(1+{x}^{2}+{x}^{3})}^{10}$$ is 
  • $$10$$
  • $$220$$
  • $$211$$
  • $$None \ of \ these$$
If $$(1+ax)^n=1+8x+24x^2+.....$$ then 
  • $$a=3$$
  • $$a=4$$
  • $$a=2$$
  • $$a=5$$
The coefficient of $$x^{n}$$ in the expansion of $$\dfrac{1}{(1-x)(1-2x)(1-3x)}$$ is 
  • $$\dfrac{1}{2}(2^{n+2}-3^{n+3}+1)$$
  • $$\dfrac{1}{2}(3^{n+2}-2^{n+3}+1)$$
  • $$\dfrac{1}{2}(2^{n+3}-3^{n+2}+1)$$
  • $$none\ of\ these$$
If  the $$6^{th}$$ term in the expansion of $$\left(\dfrac {1}{x^{8/3}}+x^{2}\log ^{x}_{10}\right)^{8}$$ is $$5600$$, then equals
  • $$1$$
  • $$\log^{10}_{e}$$
  • $$10$$
  • $$No\ such\ x\ exists$$
The number of terms in $$\left(x^{3}+1+\dfrac{1}{x^{3}}\right)^{100}$$ is
  • $$300$$
  • $$200$$
  • $$100$$
  • $$201$$
The coefficient of $$x^{4}$$ in the expansion $$\left(1+5x+9x^{2}+.+\left(4k+1\right)x^{k}+..\right)\left(1+x^{2}\right)^{11}$$ is 
  • $$^{11}C_{2}+4 ^{11}C_{1}+3$$
  • $$^{11}C_{2}+3 ^{11}C_{1}+4$$
  • $$3 ^{11}C_{2}+4 ^{11}C_{1}+3$$
  • $$171$$
If the coefficients of $$2^{nd}, 3^{rd},$$ and $$4^{th}$$ terms in the expansion of $${(1 + x)^n},n \in N$$ are in A.P.,then $$n=$$
  • $$7$$
  • $$14$$
  • $$2$$
  • None of these
The coefficient of $$x^8$$ in the expansion of $$(1+x+x^3+x^5+x^9)(1+x^2)^5(1_x^4)^6$$ is equal to
  • 180
  • 100
  • 80
  • None of these
In the expansion of $$\displaystyle {\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{1/3}} + 1}} - \frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$$, the term which does not contain $$x$$ is -
  • $$^{11}{C_4}{ - ^{10}}{C_3}$$
  • $$^{10}{C_7}$$
  • $$^{10}{C_4}$$
  • $$^{11}{C_5}{ - ^{10}}{C_5}$$
The coefficient of $${ x }^{ n }$$ in $$(1-x+\frac { { x }^{ 2 } }{ 2! } -\frac { { x }^{ 3 } }{ 3! } +.....+\frac { { (-1) }^{ n }{ x }^{ n } }{ n! } )^{ 2 }$$ is 
  • $$\frac { { (-n) }^{ n } }{ n! } $$
  • $$\frac { { (-2) }^{ n } }{ n! } $$
  • $$\frac { 1 }{ (n!)^{ 2 } } $$
  • $$-\frac { 1 }{ (n!)^{ 2 } } $$
If coefficient of $$2^{nd}, 3^{rd}$$ and $$4^{th}$$ term in the expansion of $$\left(1+x\right)^{2n}$$ are in A.P. then :
  • $$2n^{2}+9n+7=0$$
  • $$2n^{2}-9n+7=0$$
  • $$2n^{2}-9n-7=0$$
  • $$2n^{2}+9n-7=0$$
The coefficient of $$a^3b^4c$$ in the expansion of $$(1+a+b-c)^9$$ is
  • $$2.^9C_7.^7C_4$$
  • $$-2.^9C_2.^7C_3$$
  • $$^9C_7.^7C_4$$
  • none of these
The coefficient of $$x^4$$ in the expansion of $$(1-2x+3x^2+4x^3)(1-x)^{-8}$$ is:
  • $$232$$
  • $$231$$
  • $$230$$
  • None of these
If the fourth term in the expansion of $$\left(px+\dfrac{1}{x}\right)^{n}$$ is independent of $$x$$, then the value of term is :
  • $$5p^{3}$$
  • $$10p^{3}$$
  • $$20p^{3}$$
  • $$None\ of\ these$$
The coefficient of $$x^6 y^5 z^3$$ in the expansion of $$(3xy - 2xz + zy)^7$$ is
  • $$\dfrac {7 !}{4! 2! 1!}\cdot 3^4 \cdot 2^2$$
  • $$-\dfrac {7 !}{4! 2! 1!}\cdot 3^4 \cdot 2^2$$
  • $$-\dfrac {7 !}{4! 2! 1!}\cdot 3^2 \cdot 2^4$$
  • $$\dfrac {7 !}{4! 2! 1!}\cdot 3^2 \cdot 2^4$$
Middle term in the expansion of $$(1+3x+3x^2+x^3)^6$$ is
  • $$4^{th}$$
  • $$3^{rd}$$
  • $$10^{th}$$
  • None of these
If the coefficients of $${ x }^{ -2 }$$ and $${ x }^{ -4 }$$ in the expansion of $${ \left( { x }^{ \frac { 1 }{ 3 }  }+\frac { 1 }{ 2x^{ \frac { 1 }{ 3 }  } }  \right)  }^{ 18 },$$ $$(x>0)$$, are $$m$$ and $$n$$ respectively, then $$\frac { m }{ n } $$ is equal to :
  • $$182$$
  • $$\dfrac { 4 }{ 5 } $$
  • $$\dfrac { 5 }{ 4 } $$
  • $$27$$
The middle term in the expansion of $$\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^{20}$$ is 
  • $$_{ }^{ 20 }{ { C }_{ 10 } }{ x }^{ 10 }{ y }^{ 10 }$$
  • $${ x }^{ 10 }{ y }^{ 10 }$$
  • $$_{ }^{ 20 }{ { C }_{ 10 } }{ \left( 2/3 \right) }^{ 10 }{ \left( xy \right) }^{ 10 }$$
  • $$-x^{ 10 }y^{ 10 }$$
$$ \binom{n}{0}+2\binom{n}{1}+2^{2}\binom{n}{2}+......++2^{n}\binom{n}{n} $$ is equal to
  • $$ 2^{n} $$
  • $$0$$
  • $$ 3^{n} $$
  • None of these
If the constant term in the expansion of $$\left( { x }^{ 3 }-\dfrac { k }{ { x }^{ 8 } }  \right) $$ is $$1320$$ then $$k$$ is equal to
  • $$11$$
  • $$8$$
  • $$2$$
  • $$6$$
If in the expansion of $$\left(2^{1/3}+\dfrac {1}{3^{1/3}}\right)^{n}$$, the ratio of $$6^{th}$$ term from beginning and from the end is $$1/6$$, then the value of $$n$$ is
  • $$5$$
  • $$7$$
  • $$13$$
  • $$None\ of\ these$$
Find the number of terms in expansion of $$(1+x)^{2}+(1-x)^{8}$$
  • $$17$$
  • $$18$$
  • $$5$$
  • $$9$$
The term independent of $$x$$ in the expansion of $$\left(\sqrt{\dfrac{x}{3}}+\dfrac{3}{2x^{2}}\right)^{10}$$ will be
  • $$3$$
  • $$5$$
  • $$9$$
  • $$None\ of\ these$$
The sum of the coefficients of the first three terms in the expansion of  $${\left( {x - \frac{3}{{{x^2}}}} \right)^m},\,x \ne 0$$ $$m$$ being a natural number is , $$559$$. Find the term of the expansion containing $$x^3$$
  • -5940
  • 1010
  • 1001
  • 1002
If the fourth term in the expansion of  $$\left( p x + \dfrac { 1 } { x } \right) ^ { n }$$  is  $$\dfrac { 5 } { 2 } ,$$  then  $$n + p$$  is equal to
  • $$\dfrac { 9 } { 2 }$$
  • $$\dfrac { 11 } { 2 }$$
  • $$\dfrac { 13 } { 2 }$$
  • $$\dfrac { 15 } { 2 }$$
The coefficient of $$x^{8}$$ in the polynomial $$\left(x-1\right)\left(x-2\right)\left(x-3\right).\left(x-10\right)$$ is:
  • $$2640$$
  • $$1320$$
  • $$1270$$
  • $$2740$$
The coefficient of  $$x ^ { 8 }$$  in the expansion of  $$\left( 1 + x ^ { 4 } \right) ^ { 3 } ( 1 - x ) ^ { 12 }$$  is
  • $$3 + 4 \times 12 C _ { 4 }$$
  • $$3 + ^ { 12 } \mathrm { C } _ { 8 }$$
  • $$^ { 12 } C _ { 8 }$$
  • $$3 - ^ { 12 } \mathrm { C } _ { 8 }$$
$$C_1 +2C_2 + 3C_3 +4C_4 + ......... + {n+1} nC_n$$
  • $$n2^{n-1}$$
  • $$2^{n+1}$$
  • $$2.2^{n-1}$$
  • Zero
$$\dfrac{C_0}{1} + \dfrac{C_2}{3} + \dfrac{C_4}{5} + \dfrac{C_6}{7} ..... = $$
  • $$\dfrac{2^n}{n +1}$$
  • $$\dfrac{2^{n+1} - 1}{n + 1}$$
  • $$\dfrac{2^{n +1}}{n +1}$$
  • None of these
$$(1+x)^{21}+(1+x)^{22}+..+(1+x)^{30}$$ in the expansion of this what is the coefficient of $$x^{5}$$ is
  • $$^{31} C_5-^{21} C_5$$
  • $$^{31} C_4-^{21} C_4$$
  • $$^{31} C_6-^{21} C_6$$
  • $$None\ of\ these$$
The sum $$^ { 20 } \mathrm { C } _ { 0 } + ^ { 20 } \mathrm { C } _ { 1 } + ^ { 20 } \mathrm { C } _ { 2 } + \ldots \ldots . ^ { 20 } \mathrm { C } _ { 10 }$$ is equal to
  • $$2 ^ { 19 } + \frac { 20 ! } { ( 10 ! ) ^ { 2 } }$$
  • $$2 ^ { 19 } - \frac { 1 } { 2 } \cdot \frac { 20 ! } { ( 10 ! ) ^ { 2 } }$$
  • $$2 ^ { 19 } + ^ { 20 } \mathrm { C } _ { 10 }$$
  • none of these
Coefficient of $$x^ {79}$$ in the expansion of $$\left(x+x^ {2}+x^ {4}\right)$$ is equal to-
  • $$0$$
  • $$150x3^ {19}$$
  • $$1$$
  • $$3^ {20}$$
The number of integral terms in the expansion of $$ (\sqrt{3}+\sqrt[8]{5})^{256}  $$ is
  • $$32$$
  • $$33$$
  • $$34$$
  • $$35$$
For a binomial distribution, n = 5.
If P (X = 4) = P (X = 3), then P (X > 2) is 
  • 0.69
  • 0.97
  • 0.21
  • 0.79
The coefficient of $$t^{50}$$ in $$(1+t)^{41}(1-t+t^2)^{40}$$ is equal to?
  • $$1$$
  • $$50$$
  • $$81$$
  • $$0$$
Find the middle term in the expansion of $$(1-2x+x^2)^n$$
  • $$\dfrac {(2n)!}{(n!)^2}(-1)^n x^n$$
  • $$\dfrac {(2n)!}{(n!)}(-1)^n x^2n$$
  • $$\dfrac {(2n)!}{(n!)^2} x^n$$
  • None of these
If $$\left(1+x+x^ {2}+x^ {3}\right)^ {5}=a_{0}+a_{1}x+a_{2}x^ {2}+....+a_{15}x^ {15}$$, then $$a_{10}$$ equals
  • $$99$$
  • $$100$$
  • $$101$$
  • $$110$$
The largest coefficient in the expansion of $${ \left( 1+x \right)  }^{ 38 }$$ is
  • $$_{ }^{ 38 }{ { C }_{ 18 } }$$
  • $$_{ }^{ 38 }{ { C }_{ 15 } }$$
  • $$_{ }^{ 38 }{ { C }_{ 20 } }$$
  • $$_{ }^{ 38 }{ { C }_{ 19 } }$$
Given that the term of the expansion $$\displaystyle (x^{1/3}+  x^{-1/2})^{15}$$  which does not contain $$x$$ is $$5$$ m , where m$$\in$$N , m $$=$$
  • 1100
  • 1010
  • 1001
  • None of these
If the $$6^{th}$$ term in the expansion of $$\displaystyle \left [ \dfrac{1}{x^{8/3}} + x^2log_{10}x \right ]^8$$ is 5600 , then $$x$$ = 
  • 10
  • 8
  • 11
  • 9
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers