Loading [MathJax]/extensions/TeX/mathchoice.js

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 9 - MCQExams.com

In the expansion of (1+x)30, the sum of the coefficients of odd powers of x, is
  • 230
  • 231
  • 0
  • 229
The coefficient of x10 in the expansion of (1+x)2(1+x2)3(1+x3)4 is qual to:
  • 52
  • 56
  • 50
  • 44
If P be the sum of odd terms and Q be the sum of even terms in the expansion of (x+a)n, then P2Q2=(x2a2)n

  • True
  • False
If (1+x2x2)8=1+a1x+a2x2+........+a16x16, then a1+a3+a5+......a15=
  • 27
  • 27
  • 32
  • 46
The sum of coefficients of the two middle terms in the expansion of (1+x)2n1 is equal to
  • (2n1)Cn
  • (2n1)Cn+1
  • 2nCn1
  • 2nCn
2007C08.2007C1+13.2007C218.2007C3+.... upto 2008 terms =
  • 0
  • 2007
  • 2007
  • 2008
 If the coefficients of x7 and x8 to the expansion of (2+13x)n are equal then n=
  • 56
  • 15
  • 45
  • 55
The coefficient of x4 in the expansion of (x23x2)10, is
  • 405256
  • 504259
  • 450263
  • none of these
The coefficient of x5 in the expansion of (1+x)21+(1+x)22+....+(1+x)30 is
  • 51C5
  • 9C5
  • 31C621C6
  • 30C520C5
Find the middle term in the expansion of (2x23+32x2)10 
  • 252
  • 248
  • 230
  • 200
The coefficient of x3 in the expression of (1+x2+x3)10 is 
  • 10
  • 220
  • 211
  • None of these
If (1+ax)n=1+8x+24x2+..... then 
  • a=3
  • a=4
  • a=2
  • a=5
The coefficient of xn in the expansion of 1(1x)(12x)(13x) is 
  • 12(2n+23n+3+1)
  • 12(3n+22n+3+1)
  • 12(2n+33n+2+1)
  • none of these
If  the 6th term in the expansion of (1x8/3+x2logx10)8 is 5600, then equals
  • 1
  • log10e
  • 10
  • No such x exists
The number of terms in (x3+1+1x3)100 is
  • 300
  • 200
  • 100
  • 201
The coefficient of x4 in the expansion (1+5x+9x2+.+(4k+1)xk+..)(1+x2)11 is 
  • 11C2+411C1+3
  • 11C2+311C1+4
  • 311C2+411C1+3
  • 171
If the coefficients of 2nd,3rd, and 4th terms in the expansion of (1+x)n,nN are in A.P.,then n=
  • 7
  • 14
  • 2
  • None of these
The coefficient of x8 in the expansion of (1+x+x3+x5+x9)(1+x2)5(14x)6 is equal to
  • 180
  • 100
  • 80
  • None of these
In the expansion of (x+1x2/3x1/3+1x1xx1/2)10, the term which does not contain x is -
  • 11C410C3
  • 10C7
  • 10C4
  • 11C510C5
The coefficient of xn in (1x+x22!x33!+.....+(1)nxnn!)2 is 
  • (n)nn!
  • (2)nn!
  • 1(n!)2
  • 1(n!)2
If coefficient of 2nd,3rd and 4th term in the expansion of (1+x)2n are in A.P. then :
  • 2n2+9n+7=0
  • 2n29n+7=0
  • 2n29n7=0
  • 2n2+9n7=0
The coefficient of a3b4c in the expansion of (1+a+bc)9 is
  • 2.9C7.7C4
  • 2.9C2.7C3
  • 9C7.7C4
  • none of these
The coefficient of x4 in the expansion of (12x+3x2+4x3)(1x)8 is:
  • 232
  • 231
  • 230
  • None of these
If the fourth term in the expansion of (px+1x)n is independent of x, then the value of term is :
  • 5p3
  • 10p3
  • 20p3
  • None of these
The coefficient of x6y5z3 in the expansion of (3xy2xz+zy)7 is
  • 7!4!2!1!3422
  • 7!4!2!1!3422
  • 7!4!2!1!3224
  • 7!4!2!1!3224
Middle term in the expansion of (1+3x+3x2+x3)6 is
  • 4th
  • 3rd
  • 10th
  • None of these
If the coefficients of x2 and x4 in the expansion of (x13+12x13)18, (x>0), are m and n respectively, then mn is equal to :
  • 182
  • 45
  • 54
  • 27
The middle term in the expansion of (23x32y)20 is 
  • 20C10x10y10
  • x10y10
  • 20C10(2/3)10(xy)10
  • x10y10
\binom{n}{0}+2\binom{n}{1}+2^{2}\binom{n}{2}+......++2^{n}\binom{n}{n} is equal to
  • 2^{n}
  • 0
  • 3^{n}
  • None of these
If the constant term in the expansion of \left( { x }^{ 3 }-\dfrac { k }{ { x }^{ 8 } }  \right)  is 1320 then k is equal to
  • 11
  • 8
  • 2
  • 6
If in the expansion of \left(2^{1/3}+\dfrac {1}{3^{1/3}}\right)^{n}, the ratio of 6^{th} term from beginning and from the end is 1/6, then the value of n is
  • 5
  • 7
  • 13
  • None\ of\ these
Find the number of terms in expansion of (1+x)^{2}+(1-x)^{8}
  • 17
  • 18
  • 5
  • 9
The term independent of x in the expansion of \left(\sqrt{\dfrac{x}{3}}+\dfrac{3}{2x^{2}}\right)^{10} will be
  • 3
  • 5
  • 9
  • None\ of\ these
The sum of the coefficients of the first three terms in the expansion of  {\left( {x - \frac{3}{{{x^2}}}} \right)^m},\,x \ne 0 m being a natural number is , 559. Find the term of the expansion containing x^3
  • -5940
  • 1010
  • 1001
  • 1002
If the fourth term in the expansion of  \left( p x + \dfrac { 1 } { x } \right) ^ { n }  is  \dfrac { 5 } { 2 } ,  then  n + p  is equal to
  • \dfrac { 9 } { 2 }
  • \dfrac { 11 } { 2 }
  • \dfrac { 13 } { 2 }
  • \dfrac { 15 } { 2 }
The coefficient of x^{8} in the polynomial \left(x-1\right)\left(x-2\right)\left(x-3\right).\left(x-10\right) is:
  • 2640
  • 1320
  • 1270
  • 2740
The coefficient of  x ^ { 8 }  in the expansion of  \left( 1 + x ^ { 4 } \right) ^ { 3 } ( 1 - x ) ^ { 12 }  is
  • 3 + 4 \times 12 C _ { 4 }
  • 3 + ^ { 12 } \mathrm { C } _ { 8 }
  • ^ { 12 } C _ { 8 }
  • 3 - ^ { 12 } \mathrm { C } _ { 8 }
C_1 +2C_2 + 3C_3 +4C_4 + ......... + {n+1} nC_n
  • n2^{n-1}
  • 2^{n+1}
  • 2.2^{n-1}
  • Zero
\dfrac{C_0}{1} + \dfrac{C_2}{3} + \dfrac{C_4}{5} + \dfrac{C_6}{7} ..... =
  • \dfrac{2^n}{n +1}
  • \dfrac{2^{n+1} - 1}{n + 1}
  • \dfrac{2^{n +1}}{n +1}
  • None of these
(1+x)^{21}+(1+x)^{22}+..+(1+x)^{30} in the expansion of this what is the coefficient of x^{5} is
  • ^{31} C_5-^{21} C_5
  • ^{31} C_4-^{21} C_4
  • ^{31} C_6-^{21} C_6
  • None\ of\ these
The sum ^ { 20 } \mathrm { C } _ { 0 } + ^ { 20 } \mathrm { C } _ { 1 } + ^ { 20 } \mathrm { C } _ { 2 } + \ldots \ldots . ^ { 20 } \mathrm { C } _ { 10 } is equal to
  • 2 ^ { 19 } + \frac { 20 ! } { ( 10 ! ) ^ { 2 } }
  • 2 ^ { 19 } - \frac { 1 } { 2 } \cdot \frac { 20 ! } { ( 10 ! ) ^ { 2 } }
  • 2 ^ { 19 } + ^ { 20 } \mathrm { C } _ { 10 }
  • none of these
Coefficient of x^ {79} in the expansion of \left(x+x^ {2}+x^ {4}\right) is equal to-
  • 0
  • 150x3^ {19}
  • 1
  • 3^ {20}
The number of integral terms in the expansion of (\sqrt{3}+\sqrt[8]{5})^{256}  is
  • 32
  • 33
  • 34
  • 35
For a binomial distribution, n = 5.
If P (X = 4) = P (X = 3), then P (X > 2) is 
  • 0.69
  • 0.97
  • 0.21
  • 0.79
The coefficient of t^{50} in (1+t)^{41}(1-t+t^2)^{40} is equal to?
  • 1
  • 50
  • 81
  • 0
Find the middle term in the expansion of (1-2x+x^2)^n
  • \dfrac {(2n)!}{(n!)^2}(-1)^n x^n
  • \dfrac {(2n)!}{(n!)}(-1)^n x^2n
  • \dfrac {(2n)!}{(n!)^2} x^n
  • None of these
If \left(1+x+x^ {2}+x^ {3}\right)^ {5}=a_{0}+a_{1}x+a_{2}x^ {2}+....+a_{15}x^ {15}, then a_{10} equals
  • 99
  • 100
  • 101
  • 110
The largest coefficient in the expansion of { \left( 1+x \right)  }^{ 38 } is
  • _{ }^{ 38 }{ { C }_{ 18 } }
  • _{ }^{ 38 }{ { C }_{ 15 } }
  • _{ }^{ 38 }{ { C }_{ 20 } }
  • _{ }^{ 38 }{ { C }_{ 19 } }
Given that the term of the expansion \displaystyle (x^{1/3}+  x^{-1/2})^{15}  which does not contain x is 5 m , where m\inN , m =
  • 1100
  • 1010
  • 1001
  • None of these
If the 6^{th} term in the expansion of \displaystyle \left [ \dfrac{1}{x^{8/3}} + x^2log_{10}x \right ]^8 is 5600 , then x
  • 10
  • 8
  • 11
  • 9
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers