Explanation
\sin\dfrac{6\pi}{5}+i(1+\cos\dfrac{6\pi}{5})=2\sin\dfrac{3\pi}{5} \cos\dfrac{3\pi}{5} +2i\cos^2\dfrac{3\pi}{5}=-2\cos\dfrac{3\pi}{5}(-\sin\dfrac{3\pi}{5}-i\cos\dfrac{3\pi}{5}) =-2\cos\dfrac{3\pi}{5}(\cos\dfrac{9\pi}{10}+i\sin\dfrac{9\pi}{10})So argument is \dfrac{9\pi}{10}
x=9^{\dfrac{1}{3}+\dfrac{1}{3^{2}}+\dfrac{1}{3^{3}}...\infty}x=9^{\dfrac{\dfrac{1}{3}}{1-\dfrac{1}{3}}}x=9^{\dfrac{1}{2}}x=3y=4^{\dfrac{1}{3}-\dfrac{1}{3^{2}}+\dfrac{1}{3^{3}}...\infty}y=4^{\dfrac{\dfrac{1}{3}}{1+\dfrac{1}{3}}}y=4^{\dfrac{1}{4}}y=2^{\dfrac{1}{2}}y=\sqrt{2}z=\dfrac{1}{(1+i)^{1}}+\dfrac{1}{(1+i)^{2}}+\dfrac{1}{(1+i)^{3}}...\inftySince it is a G.P with a common ratio of \dfrac{1}{(1+i)} we get the sum as=\dfrac{\dfrac{1}{1+i}}{1-\dfrac{1}{1+i}}=\dfrac{1}{i}=-i.Hence x+yz =3-\sqrt{2}i\tan\theta=\dfrac{-\sqrt{2}}{3}\theta=\tan^{-1}(\dfrac{-\sqrt{2}}{3})=-\tan^{-1}(\dfrac{\sqrt{2}}{3})
Please disable the adBlock and continue. Thank you.