Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 11 - MCQExams.com

The value of (z+3)(¯z+3) is eqquivalent to
  • |z+3|2
  • |z3|
  • z2+3
  • None of these
If 3+2isinx12isinx is purely imaginary then x= ?
  • nπ±π6
  • nπ±π3
  • 2nπ±π3
  • 2nπ±π6
For Z1=61i1+i3;Z2=61i3+i;Z3=61i3i which of the following holds good?
  • |Z1|2=32
  • |Z1|4+|Z2|4=|Z3|8
  • |Z1|3+|Z2|3=|Z3|6
  • |Z1|4+|Z2|4=|Z3|8
For a complex number z, the minimum value of |z|+|zcosαisinα| is
  • 0
  • 1
  • 2
  • None of these
|z4|<|z2| represents the region given by?
  • Re(z)>3
  • Re(z)<0
  • Re(z)>2
  • None of these
If P(x)=ax2+bx+c and Q(x)=ax2+dx+c where ac0, then P(x).Q(x)=0 has
  • exactly one real root
  • atleast two real roots
  • exactly three real roots
  • all four are real roots
The modulus of ¯6+i3+¯6+i+¯6+i2 is
  • 17
  • 533
  • 456
  • 49
Let a,b,c, be the sides of a triangle. No two of them are equal and λR. If the roots of the equation x2+2(a+b+c)x+3λ(ab+bc+ca)=0 are real and distinct, then
  • λ<43
  • λ>53
  • λ(13,53)
  • λ(43,53)
If a+b+c=0 then the roots of the equation 4ax2+3bx+2c=0 where a,b,cR are 
  • real and distinct
  • imaginary
  • real and equal
  • infinite
If a,b,c,d be a form consecutive term of an increasing A.P., then the roots of the equation (xa)(xc)+2(xb)(xd)=0
  • Real & distinct
  • complex
  • equal roots
  • none of these
If  |z1|<1 and |z1z21¯z1z2|<1, then |z2|>1
  • True
  • False
If |z|=1 and |ω1|=1 where z,ωC then the largest set of values of |2z1|2+|2ω1|2 equals 
  • [1,9]
  • [2,6]
  • [2,12]
  • [2,18]
If the quadratic equation 4x22(a+c1)x+acb=0(a>b>c).
  • Both roots are greater than a
  • Both roots are less than c
  • Both roots lie between c/2 and a/2
  • Exactly one of the roots lie between c/2 and a/2
If the roots a2x2+2bx+c2=0 are imaginary then the roots of b(x2+1)+2acx=0 are 
  • complex number
  • real and unequal
  • real and equal
  • none
If a>b>c, a0 and the system of equations
ax+by+cz=0, bx+cy+az=0, cx+ay+bz=0 has non-trivial solutions, then the roots of the quadratic equation at2+bt+c=0.
  • Are imaginary
  • Are real and equal
  • Are real and distinct
  • May be real of imaginary
If z is a complex number such that |z1|=1 then arg(1z12) may be 
  • π6
  • π2
  • π4
  • π4
If z=21+i3, then the value of arg(z) is?
  • π
  • π3
  • 2π3
  • π4
If θ real then the modulus of 11+cosθ+isinθ is
  • 12secθ2
  • 12cosθ2
  • secθ2
  • cosθ2
The function of imaginary roots of the equation (x1)(x2)(3x+1)=32 is 
  • 0
  • 1
  • 2
  • 4
Let z,w be complex numbers such that z+iw= and zw=π Then arg z equals
  • π4
  • 5π4
  • 3π4
  • π2
If the roots of the equation bx2+cx+a=0 be imaginary then for all real values of x the expression 3b2x2+6bcx+2c2 is 
  • Less then 4ab
  • Greater than 4ab
  • Less than 4ab
  • Greater then 4ab
The equation x(x+2)(x2x)=1, has 
  • All roots imaginary
  • All roots negative
  • Two roots real and two roots imaginary
  • All roots real
If ¯Δ=|123i5+4i2+3i81i54i1+i3| then Δ=
  • Purely real
  • Purely imaginary
  • Complex
  • 0
Let z be a complex number of maximum amplitude satisfying |z3|=Re(z), then |z3| is equal to
  • 1
  • 2
  • 3/2
  • 9
Let A and B represent z1 and z2 in the Argand plane and z1,z2 be the roots of the equation z2+pz+q=0 where p,q are complex numbers. If O is the origin OA=OB and AOB=α then p2=
  • 2q cos(α2)
  • 4q cos(α2)
  • 4q cos2(α2)
  • 4q2 cos2(α2)
If z be any complex number such that |3z2|+|3z+2|=4, then locus of z is
  • An ellipse
  • A circle
  • A line-segment
  • None of these
The number of imaginar roots of the equation (x1)(x2)(3x2)(3x+1)=32 is
  • Zero
  • 1
  • 2
  • 4
If z1=10+6i,z2=4+6i and z is a complex number such that amp(zz1zz2)=π4 , then the value of |z79i| is equal to
  • 2
  • 22
  • 32
  • 23
z0 is the roots of 1+x+x2=0 and z=3+6iz8103z930, then arg(z) is 
  • π4
  • π6
  • π9
  • none of these
The modulus of the complex number z such that |z+3i|=1 and argz=π is equal to
  • 1
  • 2
  • 4
  • 3
The roots of the equation (3b+c4a)x2+(3c+a4b)x+(3a+b4c)=0 are 
  • Irrational
  • Rational
  • Non-real
  • Imaginary
z22z2z2z1z2 is unimodular then
  • |z2|=2
  • |z1|=1
  • Both A and B
  • None of these
In quadratic equation ax2+bx+c=0, if discriminant D=b24ac, then roots of quadritic equation are: 
  • real and distinct, if D > 0
  • real and equal (repeated rotos), if D = 0
  • non-real (imaginary), if D < 0
  • none of the above
If Z=sin6π5+i(1+cos6π5) then
  • |Z|=2cos3π5
  • Arg(Z)=π5
  • Arg(Z)=9π10
  • none of these
If z1 and z2 are two non zero complex numbers such that |z1+z2|=|z1|+|z2|, then arg z1 - arg z2 is equal
  • π
  • π2
  • 0
  • π2
This equation (x5)11+(x52)11+....+(x511)11=0 has 
  • all the roots real
  • one real and 10 imaginary roots
  • real roots namely x=5,52....,59,510,511
  • none
Find the value of k for which the roots are real and equal:
5x24x+2+k(4x22x1)=0
  • 1
  • 1
  • 65
  • 65
If z-{1} and z-{2} are two non zero complex numbers such that |z1+z2|=|z1|+|z2|, then argz1-arg z2 is equal to:
  • π
  • π2
  • 0
  • π2
Argument and modulus of [1+i1i]2013 are respectively
  • π2 and 1
  • π2 and 2
  • 0 and 2
  • π2 and 1
If the roots of the equation x28x+(a26a)=0 are real, then
  • -2 < a < 8
  • 2 < a < 8
  • 2a8
  • 2a8
If z is a complex number of unit modulus and argument θ, then arg(1+z1+¯z) equals 
  • θ
  • π2θ
  • θ
  • πθ
If a and b are positive real numbers and each of the equations x2+3ax2+b=0 and x2+bx+3a=0 has real roots, then the smallest value of (a+b) is 
  • 16/3
  • 6
  • 14/3
  • 4
Let z, w be complex numbers such that ¯z+i¯w=0 and arg (ZW)=pi. Then, arg (z) equals
  • π4
  • π2
  • \3pi4
  • \5pi4
Argument of the complex number  (13i2+i).
  • 45
  • 135
  • 225
  • 240
If z=1, then principal value of arg (z2/3) is
  • 0,2π3,2π3
  • π3,2π
  • 5π3
  • π,π
The amplitude of eeiθ is equal to
  • sinθ
  • -sinθ
  • ecosθ
  • esinθ
If z=1, then principal value of arg (z23) is 
  • 0,2π3,2π3
  • π3,2π
  • 5π3
  • π,π
z0 is the roots of 1+x+x2=0 and z=3+6iz8103z930. Then arg(z) is-
  • π4
  • π6
  • π9
  • π2
Find the modules and amplitude for each of the following complex numbers
  • 7-5i
  • 3+2i
  • -8+15i
  • -3(1-i)
The value of 'a' fro which the equation ax225x+4=0 has equal roots is 
  • 54
  • 45
  • 54
  • 53
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers