Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 12 - MCQExams.com

If z=3+i3i, then the fundamental amplitude of z is
  • π3
  • π3
  • π6
  • None of these
What will be quadratic equation in x when the roots have arithmetic mean A and the geometric mean G?
  • x2+2Ax+G2=0
  • x2+G2x+A=0
  • x2+2Ax+G2=0
  • x2+Gx+A=0
Arg {sin8π5+i(1+cos8π5)} is equal to
  • 3π10
  • 3π10
  • 4π5
  • 3π5
Argument of the complex number (13i2+i)
  • 450
  • 1350
  • 2250
  • 2400
In which quadrant of the complex , the point 1+2i1i kies?
  • Fourth
  • First
  • Second
  • Third
The amplitude of sinπ5+i(1cosπ5) is 
  • 2π5
  • π15
  • π10
  • π5
Principal value of amplitude of (1+i) is 
  • π4
  • π12
  • 3π4
  • π
Out of the following the solution of the____________quadratic equation is position and rational.
  • 6x2+5x+6=0
  • 6x213x+6=0
  • 12x2+7x12=0
  • 2x2+x3=0
If a+b+c=0 then the equation 3ax2+2bx+c=0 has
  • imaginary roots
  • real and equal root
  • real and different roots
  • rational roots
The principal amplitude of (sin40o+icos40o)5 is
  • 70o
  • 110o
  • 110o
  • 70o
The modulus of the complex number z such that |z+3i|=1 and arg z=π is equal to 
  • 1
  • 2
  • 9
  • 4
  • 3
If z is a complex number of unit modules and argument θ, then the real part of z(1ˉz)z(1+z) is :
  • 2sin2θ2
  • 2sin2θ2
  • 1+cosθ2
  • 1cosθ2
The amplitude of (1+i3)3+i is
  • π3
  • π6
  • π4
  • 2π3
The nature of the roots of the quadratic equation $$2x^2  4x + 3 = 0$$ are
  • real and distinct
  • real and equal
  • no real roots
  • imaginary
If z1,z2,z3,z4 be the vertices of a square in Argand plane , then
  • `2z2=(1i)z1+(1+i)z3
  • 2z4=(2i)z1+(2+i)z3
  • 2z2=(3i)z1+(3+i)z3
  • 2z4=(4i)z1+(4+i)z3
The complex numbers z1,z2,z2 satisfying z1+z3z2z3=1i32
  • If area zero
  • right angled isosceles
  • equilateral
  • obtuse angled
If z(22i3)2=i(3+i)4, then the amplitude of z is
  • π6
  • 5π6
  • π6
  • 7π6
If z1=1+2i,z2=13i and z3=2+4i then, the points of the Argand diagram representing z1z2z3,2z1z2z3,7z1z2z3 are :
  • Vertices of an isosceles triangle
  • Collinear
  • Vertices of a right angled triangle
  • Vertices of a equilateral triangle
The roots of (x41)49+(x49)41+(x2009)2009=0  are 
  • all necessarily real
  • non - real except one positive root
  • nor - real except positive roots
  • nonr real except for 3 roots of which exactly one is positive
The complex number z satisfies z+|z|=2+8i. The value of |z| is 
  • 10
  • 13
  • 17
  • 23
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers