Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 3 - MCQExams.com

If z=2i3 then z44z2+8z+35 is :
  • 6
  • 0
  • 1
  • 2

lf z1, z2 are roots of equation z2az+a2=0, then |z1z2|=
  • a2
  • a
  • 2a
  • 1

 lf log12|z2|>log12|z| then
  • x>1
  • x<1
  • x<2
  • x>2
For n an integer, the argument of 

Z=(3+i)4n+1(1i3)4n is
  • π6
  • π3
  • π2
  • 2π3
The amplitude of 1+cosxisinx is
  • x2
  • x
  • x2
  • 2x

The region represented by z such that |zaz+a|=1(Im(a)=0) is
  • y=0
  • x=0
  • x+y=0
  • xy=0

The principal argument of i3i1 is
  • tan112
  • tan132
  • tan152
  • tan172
The principal argument of

2[cos5π3+isin5π3] is
  • 5π3
  • π3
  • π3
  • π2

|1(1i)21(1+i)2|=
  • 4
  • 3
  • 2
  • 1

The principal amplitude of (2i)(12i)2 is in the interval
  • (0,π2)
  • (π2,0)
  • (π,π2)
  • (π2,π2)

The principal argument of 1+2+i is
  • π3
  • π6
  • π8
  • π4

lf Z1,Z2 are two unimodular Complex numbers then |1Z1+1Z2|=
  • 1
  • |Z1+Z2|
  • |Z1|+|Z2|
  • 2
The real value of θ for which the expression, 1+icosθ12icosθ is real number is
  • nπ±π2
  • nππ2
  • nπ+π2
  • 2nπ±π2

If α, β, γ are modulus of the complex number 3+4i,5+12i, 1i, then the increasing order for α,β and γ is
  • α, γ, β
  • α, β, γ
  • γ, α, β
  • can't be determined

ln a G. P first term is 3+i and common ratio is 3i then the modulus of the nth term of the G.P. is
  • 4
  • 2n1
  • 2n
  • 2n+1

If z=1i1+i , then argz=

  • π4,π2
  • π4,π2
  • 3π4,π
  • π4,3π4

lf log(13)|z+1|>log(13)|z1|, then
  • Re(z)0
  • Re(z)<0
  • Im(z)>0
  • Im(z)0
If x+3i2+iy=1i, then the value of (5x7y)2 is
  • 1
  • 0
  • 2
  • 4

lf z1, z2 are any two complex numbers then |z1+z21z22|+|z1z21z22| is equal to
  • |z1|
  • |z2|
  • |z1+z2|+|z1z2|
  • |z1+z2||z1z2|
lf z0, then 500arg(|z|)dx equals
  • 50
  • not defined
  • 0
  • 50π
Number of solutions of the equation |z|2+7z=0 is
  • 1
  • 2
  • 4
  • 6
Which of the following equations have no real roots ?
  • x223+5=0
  • 2x2+62x+9=0
  • x2235=0
  • 2x262x9=0
The values of k for which the equation 2x2+kx+x+8=0 will have real and equal roots are
  • 10 and 6
  • 7 and 9
  • 6 and 10
  • 7 and 9
The equation 2x2+2(p+1)x+p=0, where p is real, always has roots that are
  • Equal
  • Equal in magnitude but opposite in sign
  • Irrational
  • Real
If the equation x2(2+m)x+1(m24m+4)=0 has coincident roots, then:
  • m=0
  • m=6
  • m=2
  • m=23
Let us consider a quadratic equation x2+λx+λ+1.25=0,  where λ is a constant. 
The value of λ such that the above quadratic equation has two coincident roots
  • λ=5 or λ=1
  • λ=1 or λ=5
  • λ=5 or λ=1
  • None of these
If the equation (m2+n2)x22(mp+nq)x+p2+q2=0 has equal roots , then
  • mp=nq
  • mq=np
  • mn=pq
  • mq=np
If the roots of the equation px2+2qx+r=0 and qx22prx+q=0 be real, then
  • p=q
  • q2=pr
  • p2=qr
  • r2=pq
Which of the following equations have no real roots ?
  • x223x+5=0
  • 2x2+62+11=0
  • x223x5=0
  • 2x262x9=0
If the equation 2x26x+p=0 has real and different roots, then the values of p are given by
  • p<92
  • p92
  • p>92
  • p92
Let us consider a quadratic equation   x2+3ax+2a2=0 
If this equation has roots α,β and it is given that α2+β2=5, then value of discriminant, Dfor the above quadratic equation is
  • D>0
  • D<0
  • D=0
  • none of these
Solve the equation |z|=z+1+2i.
  • 32i
  • 232i
  • 2+32i
  • 322i
Both the roots of the given equation (xa)(xb)+(xb)(xc)+(xc)(xa)=0 are always
  • Positive
  • Negative
  • Real
  • Imaginary
If 512i+512i=z, then principal value of arg z can be
  • π4
  • π4
  • 3π4
  • 3π4
The nature of roots of x2+x+1 is
  • real and equal
  • real and unequal
  • imaginary and distinct
  • imaginary and equal
The greatest positive argument of complex number satisfying |z4|=Re(z) is
  • π3
  • 2π3
  • π2
  • π4
If k+k+z2∣=∣z2(kϵR), then possible argument of z is
  • 0
  • π
  • π2
  • None of these
If b24ac0, then the root of quadratic equation ax2+bx+c=0 is
  • b2a±b24a2a
  • b2a±b2+4ac2a
  • b2a±b2+4ac2a
  • b2a±b24ac2a
The principal value of arg z where z=1+cos6π5+isin6π5 is given by
  • 3π5
  • π5
  • 3π5
  • π5
Find the complex numbers z which simultaneously satisfy the equation |z12z8i|=53 and |z4z8|=1.
  • 6 + 8 i or 6 + 17 i
  • 6 + 8 i or 6 - 17 i
  • 6 - 8 i or 6 + 17 i
  • 6 - 8 i or 6 - 17 i
If iz3+z2z+i=0, then 
  • |z|<1
  • |z|>1
  • |z|=1
  • |z|=0
Number of roots of the equation z10z5992=0 where real parts are negative is
  • 3
  • 4
  • 5
  • 6
For any integer n, the argument of z=(3+i)4n+1(1i3)4n is 
  • π6
  • π3
  • π2
  • 2π3
If z=x+iy and x2+y2=16, then the range of ||x||y|| is 
  • [0, 4]
  • [0,2]
  • [2, 4]
  • none of these
For |z1|=1, find tan [arg((z1)(22iz))].
  • i
  • 1
  • i
  • 1
Find the greatest and the least value of |z1+z2| if z1=24+7i and |z2|=6.
  • least value is 25, greatest value is 31
  • least value is 19, greatest value is 31
  • least value is 19, greatest value is 25
  • least value is 13, greatest value is 25
If (w¯wz)/(1z) is purely real where w=α+iβ,β0 and z1, then set of the values of  z is 
  • z:|z|=1
  • z:z=¯z
  • z:z1
  • z:|z|=1,z1
Complex number z satisfy the equation |z(4/z)|=2Locus of z if |zz1|=|zz2|, where z1 and z2 are complex numbers with the greatest and the least moduli, is  
  • line parallel to the real axis
  • line parallel to the imaginary axis
  • line having a positive slope
  • line having a negative slope
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect and Reason is correct
If (8+i)50=349(a+ib), then find the value of a2+b2
  • (a2+b2)=9
  • (a2+b2)=27
  • (a2+b2)=3
  • (a2+b2)=1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers