Explanation
z1 and z2 are roots of z2−az+a2=0∴z1,z2=a±√a2−4a22=a(1±i√32)∴z1,z2 are multiple of complex cube roots of unity.∴|z1z2|=|ω2ω|=|ω|=1
Z=(−1+√3ii)4n+1(1−i√3)4n
Z=(2ωi)4n+1(−2ω)4n
=2ωi4n+1×(2ω−2ω)4n
=2ωi×1
=−1+√3ii
=√3+i∴arg|z|=tan−1(1√3)=π6
⇒|(x−a)+iy|=|(x+a)+iy|
⇒(x−a)2+⧸y2=(x+a)2+⧸y2
⇒⧸x2+⧸a2−2ax=⧸x2+⧸a2+2ax
⇒0
|1(1−i)2−1(1+i)2|=|(1+i)2−(1−i)2((1−i)(1+i))2|
=|⧸1+2i−⧸1−(⧸1−2i)−⧸1(12+12)2|
=|4i4|=1
an=(√3+i)(√3−i)n−1
↓ ↓
first ratio
[as|zn−1|=(|z|)n−1]
Step -1: Finding Discriminant of equation in option A.
The discriminant of any quadratic equation, ax2+bx+c=0, is D=b2−4ac.
Discriminant of x2−2√3x+5=0 is:
D=(−2√3)2−4×1×5
=12−20
=−8<0
Step -2: Finding discriminant of equation in option B.
Discriminant of 2x2+6√2x+9=0 is:
D=(6√2)2−4×2×9
=72−72
=0
Step -3: Finding discriminant of equation in option C.
Discriminant of x2−2√3x−5=0 is:
D=(−2√3)2−4×1×−5
=12+20
=32>0
Step -4: Finding discriminant of equation in option D.
Discriminant of 2x2−6√2x−9=0 is:
D=(−6√2)2−4×2×−9
=72+72
=144>0
Step -5: Finding the correct option.
∵The equation in option A has discriminant less than zero.
⇒It has no real roots.
Hence, option A is correct.
Discriminant of −2x2+6√2x+11=0 is:
D=(6√2)2−4×−2×11
=72+88
=160>0
Discriminant of −2x2−6√2x−9=0 is:
D=(−6√2)2−4×−2×−9
Please disable the adBlock and continue. Thank you.