Loading [MathJax]/extensions/TeX/boldsymbol.js

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 4 - MCQExams.com

Let z be a complex number such that the imaginary part of z is nonzero and a = z2+z+1 is real. Then a cannot take the value
  • 1
  • 13
  • 12
  • 34
Complex number z satisfy the equation |z(4/z)|=2Then the value of arg(z1/z2), where z1 and z2 are complex numbers with the greatest and the least moduli, can be
  • 2π
  • π
  • π2
  • none of these
Find the argument of  sinα+i(1cosα),0<α<π
  • α2
  • α4
  • 2α
  • α
Find the modulus and the principal argument of the complex number (tan1i)2
  • |z|=(tan1)2+1,z lies in 4rd quadrant, arg(z)=2π/2
  • |z|=(tan1)2+1,z lies in 4rd quadrant, arg(z)=2π
  • |z|=(tan1)2+1,z lies in 3rd quadrant, arg(z)=2π/2
  • |z|=(tan1)2+1,z lies in 3rd quadrant, arg(z)=2π
Find the argument of 1+3i3+i
  • π3
  • π6
  • π2
  • π
Find the minimum value of |z1| if ||z3||z+1||=2.
  • |z1|0
  • |z1|1
  • |z1|2
  • |z1|3
If z is a complex number, then find the minimum value of |z|+|z1|+|2z3|.
  • E=1
  • E=2
  • E=3
  • E=4
If |z11|1,|z22|2,|z33|3, then find the greatest value of |z1+z2+z3|.
  • the greatest value is 6.
  • the greatest value is 7.
  • the greatest value is 9.
  • the greatest value is 12.
Find the modulus and the principal argument of the complex number i1i(1cos2π5)+sin2π5
  • cosec(π5)2,9π20
  • sin(π5)2,11π20
  • cosec(π5)2,11π20
  • sin(π5)2,9π20
if  z=1+i tanα, where  π<α<3π2 is |z| is equal to 
  •  secα
  •  secα
  •  cosecα
  • none of these
Let  z=cosθ+isinθcosθisinθ,  π4<0<π2. Then arg z is 
  •  2θ
  •  2θπ
  •  π+2θ
  • None of these
The value of the sum  13n=1(in+in+1), where  i=1
  • i
  • i1
  • i
  • 0
If  |z11|<1,|z22|<2,|z33|<3 then  |z1+z2+z3|
  •   is less than 6
  •   is more than 3
  •   is less than 12
  •   lies between 6 and 12
The equation x26x+8+λ(x24x+3)=0,λR, has 
  • real and unequal roots for all λ
  • real roots for λ<0 only
  • real roots for λ>0 only
  • real and unequl roots for λ=0 only
If  a3+b3+c33abc=0 then the roots of the equation
(a2bc)x2+2(b2ac)x+c2ab=0 are 
  • imaginary
  • real and unequal
  • real and equal
  • Cannot say
If  z=3+i3i then the fundamental amplitude of z is 
  •  π3
  •  π3
  •  π6
  • None of these
If l,m are real lm then the roots of the equation (lm)x25(l+m)x2(lm)=0 are
  • real and equal
  • non real complex
  • real and unequal
  • none of these
In the Argand's plane, the locus of z(1) such that arg{32(2z25z+33z2z2)}=2π3 is
  •  a hyperbola with the directrices at z=3/2 and z=2/3.
  • an ellipse with the directrices at z=3/2 and z=2/3.
  • a segment of a circle subtending angle 2π3 on arc between points z=3/2 and z=2/3 lying below real axis.
  • a segment of a circle subtending angle 2π3 on arc between points z=3/2 and z=2/3 lying above real axis.
Find the principal argument of the complex number sin6π5+i(1+cos6π5).  
  • arg(z)=9π10,|z|=2cos3π5
  • arg(z)=π10,|z|=2cos3π5
  • arg(z)=9π10,|z|=2cos3π5
  • arg(z)=9π10,|z|=2cos2π5
If z1z2 and  |z1+z2|=|1z1+1z2| then
  • at least one of  z1,z2 is unimodular
  • both z1,z2 are unimodular
  •  z1.z2=1
  • None of these
If ui=11i then u2u3...un is equal to 
  • 1n
  • 1n!
  • 1
  • none of these
If z=1+i3,then z6 equals
  • 32
  • -32
  • 64
  • None of these
Find the value of k for which given equation has real and equal roots.
(k12)x2+2(k12)x+2=0
  • k=12
  • k=13
  • k=14
  • k=15
Determine the nature of the roots of the following equations from their discriminants.

y24y1=0
  • real and equal
  • real and unequal
  • complex
  • Cannot be determined
arg(bi),(b>0) is
  • π
  • π2
  • π2
  • 0
The locus of z=x+iy which satisfying the inequality log1/2|z1|>log1/2|zi| is given by
  • x+y<0
  • xy>0
  • xy<0
  • x+y>0
|z1+z2|=|z1|+|z2| is possible if 
  • z2=¯z1
  • z2=1z1
  • argz1=argz2
  • |z1|=|z2|
If arg z<0 then arg (z) arg z is equal to
  • π
  • π
  • π2
  • π2
If z=1+icotα,π2<α<0, then |z| is equal to 
  • cosecα
  • cosecα
  • cosecα or cosecα
  • none of these
A quadratic equation with rational coefficients can have
  • both roots equal and irrational
  • one root rational and other irrational
  • one root real and other imaginary
  • none of these
\displaystyle \left [ \left ( \cos \theta +i \sin \theta \right )\left ( \cos \theta -i\sin \theta  \right ) \right ]^{-1}
  • \displaystyle i
  • \displaystyle 1
  • \displaystyle -i
  • \displaystyle -1
The inequality |z-4| < |z-2| represents the region given by 
  • Re(z) > 1
  • Re(z) < 2
  • Re(z) > 0
  • None of these
Solve:
\displaystyle \left ( x+iy \right )\left ( 2-3i \right )= 4+i
  • \displaystyle x= \left ( 8/13 \right ), y= -\left ( 14/13 \right ).
  • \displaystyle x= \left ( 5/13 \right ), y= \left ( 14/13 \right ).
  • \displaystyle x= -\left ( 14/13 \right ), y= \left ( 5/13 \right ).
  • \displaystyle x= \left ( 14/13 \right ), y=- \left ( 8/13 \right ).
Solve : (2-\sqrt{-100})(1+\sqrt{-36})
  • 62+2i
  • 52+2i
  • -52+2i
  • -88+2i
Find arg(\displaystyle 1+\sqrt{2}+i)
  • \displaystyle \pi /16.
  • \displaystyle \pi /8.
  • \displaystyle \pi /12.
  • \displaystyle \pi /10.
Determine the nature of roots of the following equation from the discriminant:
y^{2}\, -\, 5y\, +\, 11\, =\, 0
  • Real and equal
  • Real and unequal
  • nonreal.
  • None of these
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them.
\displaystyle 2x^2 - 3x + 5 =0
  • x=0 and x=-2
  • x=3, x=-6
  • No real root.
  • None of these
Find the value of p for which the quadratic equation x^2 + p(4x + p - 1) + 2 = 0 has equal roots ?
  • \displaystyle -1, \frac{2}{3}
  • 3 , 5
  • \displaystyle -1, \frac{4}{3}
  • \displaystyle \frac{3}{4}, 2
Find the values of k for each of the following quadratic equation, so that they have two real equal roots.
\displaystyle 2x^2 + kx + 3 =0
  • k=\pm 2\sqrt{3}
  • k=\pm \sqrt{3}
  • k=\pm 2\sqrt{6}
  • k=\pm \sqrt{6}
The nature of the roots of the equation x^2 - 5x + 7 = 0 is
  • No real roots
  • 1 real root and 1 imaginary
  • Real and unequal
  • Real and equal
The equation x^2 - px + q = 0\  p, q \in R has no real roots if 
  • p^2 > 4q
  • p^2 < 4q
  • p^2 = 4q
  • None of these
Find the roots of the following quadratic equation by using the quadratic formula
4x^2 + 3x + 5 =0
  • \displaystyle \frac { 3\pm \sqrt { 71 } i }{ 8 }
  • \displaystyle \frac { 3\pm \sqrt { 89 } i }{ 8 }
  • \displaystyle \frac { -3\pm \sqrt { 71 } i }{ 8 }
  • \displaystyle \frac { -3\pm \sqrt { 89 } i }{ 8 }
ax^2 + bx + c = 0, where a, b, c are real, has real roots if 
  • a, b, c are integers
  • b^2> 3ac
  • ac > 0 
  • c = 0
If p, q, r are real and \displaystyle p\neq q, then roots of the equation \displaystyle \left ( p-q \right )x^{2}+5\left ( p+q \right )x-2\left ( p-q \right )=0 are
  • Real and equal
  • Complex
  • Real and unequal
  • None of these
The roots of a^2x^2 + abx = b^2, a \neq 0, b \neq 0 are:
  • Equal
  • Non- real
  • Unequal
  • None of these
If -2 is a root of the quadratic equation x^2 + px + 2 = 0 and the quadratic equation 2x^2 + px+ k = 0 has equal roots, find the value of k.
  • \displaystyle k = \frac{8}{9}
  • \displaystyle k = -\frac{8}{9}
  • \displaystyle k = -\frac{9}{8}
  • \displaystyle k = \frac{9}{8}
If z = re^{i\theta}, then the value of |e^{iz}| is equal to
  • e^{rcos\theta}
  • e^{-rcos\theta}
  • e^{rsin\theta}
  • e^{-rsin\theta}
Find the discriminant of the equation and the nature of roots. Also find the roots.
6x^2 + x - 2 = 0
  • D=49, Real and distinct roots: \displaystyle \frac{1}{5}, \frac{-2}{3}
  • D=39Real and distinct roots: \displaystyle \frac{1}{2}, \frac{-2}{3}
  • D=49Real and distinct roots: \displaystyle \frac{1}{3}, \frac{-7}{3}
  • D=49Real and distinct roots: \displaystyle \frac{1}{2}, \frac{-2}{3}
Find the modulus and amplitude of -2i
  • |z|=2; amp(z)=-\dfrac {3\pi}{2}
  • |z|=2i; amp(z)=\dfrac {\pi}{2}
  • |z|=2; amp(z)=\dfrac {\pi}{2}
  • |z|=2; amp(z)=-\dfrac {\pi}{2}
Find the modulus and amplitude of -2 + 2 \sqrt 3i
  • |z|=2\sqrt [ 2 ]{ 2 } ; amp(z)=\dfrac {\pi}{3}
  • |z|=2\sqrt [ 2 ]{ 2 } ; amp(z)=\dfrac {2\pi}{3}
  • |z|=4; amp(z)=\dfrac {2\pi}{3}
  • |z|=4; amp(z)=\dfrac {\pi}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers