Explanation
Comparing with the standard quadratic equation is $$ax^2+bx+c=0$$
Here, $$a^2x^2 + abx = b^2, a \neq 0, b \neq 0$$ $$\Rightarrow a^2x^2 + abx-b^2=0$$ Now, roots of the quadratic equation $$=\dfrac { -ab\pm \sqrt { { (ab) }^{ 2 }-4{ a }^{ 2 }(-{ b }^{ 2 }) } }{ 2{ a }^{ 2 } } $$$$=\dfrac { -ab\pm \sqrt { 5{ a }^{ 2 }{ b }^{ 2 } } }{ 2{ a }^{ 2 } } $$$$=\dfrac { -ab\pm \sqrt { 5 } ab }{ 2{ a }^{ 2 } } $$$$=\dfrac { -b\pm \sqrt { 5 } b }{ 2{ a } } $$ Thus, the roots are real and unequal.
Please disable the adBlock and continue. Thank you.