Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 4 - MCQExams.com

Let z be a complex number such that the imaginary part of z is nonzero and a = z2+z+1 is real. Then a cannot take the value
  • 1
  • 13
  • 12
  • 34
Complex number z satisfy the equation |z(4/z)|=2Then the value of arg(z1/z2), where z1 and z2 are complex numbers with the greatest and the least moduli, can be
  • 2π
  • π
  • π2
  • none of these
Find the argument of  sinα+i(1cosα),0<α<π
  • α2
  • α4
  • 2α
  • α
Find the modulus and the principal argument of the complex number (tan1i)2
  • |z|=(tan1)2+1,z lies in 4rd quadrant, arg(z)=2π/2
  • |z|=(tan1)2+1,z lies in 4rd quadrant, arg(z)=2π
  • |z|=(tan1)2+1,z lies in 3rd quadrant, arg(z)=2π/2
  • |z|=(tan1)2+1,z lies in 3rd quadrant, arg(z)=2π
Find the argument of 1+3i3+i
  • π3
  • π6
  • π2
  • π
Find the minimum value of |z1| if ||z3||z+1||=2.
  • |z1|0
  • |z1|1
  • |z1|2
  • |z1|3
If z is a complex number, then find the minimum value of \left|z\right| + \left|z - 1\right| + \left|2z - 3\right|.
  • E = 1
  • E = 2
  • E = 3
  • E = 4
If \left|z_1 - 1\right| \le 1, \left|z_2 - 2\right| \le 2, \left|z_3 - 3\right| \le 3, then find the greatest value of \left|z_1 +  z_2 + z_3\right|.
  • the greatest value is 6.
  • the greatest value is 7.
  • the greatest value is 9.
  • the greatest value is 12.
Find the modulus and the principal argument of the complex number \displaystyle \frac{i - 1}{i\left(1 - cos \frac{2\pi}{5}\right) + sin \frac{2\pi}{5}}
  • \displaystyle \frac{cosec(\frac{\pi}{5})}{\sqrt2}, \frac{9\pi}{20}
  • \displaystyle \frac{sin(\frac{\pi}{5})}{\sqrt2},\displaystyle \frac{11\pi}{20}
  • \displaystyle \frac{cosec(\frac{\pi}{5})}{\sqrt2},\displaystyle \frac{11\pi}{20}
  • \displaystyle \frac{sin(\frac{\pi}{5})}{\sqrt2}, \displaystyle \frac{9\pi}{20}
if \displaystyle\ z=1+i\ \tan \alpha , where \displaystyle\ \pi < \alpha < \frac{3\pi }{2} is |z| is equal to 
  • \displaystyle\ \sec \alpha
  • \displaystyle\ -\sec \alpha
  • \displaystyle\ cosec\alpha
  • none of these
Let \displaystyle\ z= \frac{\cos \theta +i\sin \theta }{\cos \theta -i\sin \theta }, \displaystyle\ \frac{\pi}{4}< 0< \frac{\pi}{2}. Then arg z is 
  • \displaystyle\ 2\theta
  • \displaystyle\ 2\theta-\pi
  • \displaystyle\ \pi +2\theta
  • None of these
The value of the sum \displaystyle\ \sum _{n=1}^{13}\left ( i^{n}+i^{n+1} \right ) , where \displaystyle\ i=\sqrt{-1}
  • i
  • i-1
  • -i
  • 0
If \displaystyle \displaystyle\ |z_{1}-1|<1, |z_{2}-2|<2, |z_{3}-3|<3 then \displaystyle\ |z_{1}+z_{2}+z_{3}|
  • \displaystyle\ is less than 6
  • \displaystyle\ is more than 3
  • \displaystyle\ is less than 12
  • \displaystyle\ lies between 6 and 12
The equation \displaystyle x^{2}-6x+8+\lambda (x^{2}-4x+3)=0,\lambda \in R, has 
  • real and unequal roots for all \lambda
  • real roots for \lambda < 0 only
  • real roots for \lambda > 0 only
  • real and unequl roots for \lambda =0 only
If   { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }-3abc=0 then the roots of the equation
\left( { a }^{ 2 }-bc \right) { x }^{ 2 }+2\left( { b }^{ 2 }-ac \right) x+{ c }^{ 2 }-ab=0 are 
  • imaginary
  • real and unequal
  • real and equal
  • Cannot say
If  \displaystyle\ z=\frac{\sqrt{3}+i}{\sqrt{3}-i} then the fundamental amplitude of z is 
  • \displaystyle\ -\frac{\pi}{3}
  • \displaystyle\ \frac{\pi}{3}
  • \displaystyle\ \frac{\pi}{6}
  • None of these
If l,m are real l\neq m then the roots of the equation \displaystyle (l-m)x^{2}-5(l+m)x-2(l-m)=0 are
  • real and equal
  • non real complex
  • real and unequal
  • none of these
In the Argand's plane, the locus of z (\neq 1) such that arg\displaystyle \left\{\frac{3}{2}\left(\frac{2z^2-5z+3}{3z^2 -z-2}\right)\right\} = \frac{2\pi}{3} is
  •  a hyperbola with the directrices at z = -3/2 and z= -2/3.
  • an ellipse with the directrices at z = 3/2 and z= 2/3.
  • a segment of a circle subtending angle \dfrac {2\pi}{3} on arc between points z = -3/2 and z= 2/3 lying below real axis.
  • a segment of a circle subtending angle \dfrac {2\pi}{3} on arc between points z = 3/2 and z= -2/3 lying above real axis.
Find the principal argument of the complex number sin \displaystyle \frac{6\pi}{5} + i\left(1 + cos \displaystyle \frac{6\pi}{5}\right).  
  • arg(z)=\displaystyle \frac{9\pi}{10}, \left|z\right| = -2 cos \displaystyle \frac{3\pi}{5}
  • arg(z)=\displaystyle \frac{\pi}{10}, \left|z\right| = -2 cos \displaystyle \frac{3\pi}{5}
  • arg(z)=\displaystyle \frac{9\pi}{10}, \left|z\right| = 2 cos \displaystyle \frac{3\pi}{5}
  • arg(z)=\displaystyle \frac{9\pi}{10}, \left|z\right| = -2 cos \displaystyle \frac{2\pi}{5}
If\displaystyle\ z_{1}\neq-z_{2} and \displaystyle\ |z_{1}+z_{2}|=\left | \frac{1}{z_{1}}+\frac{1}{z_{2}} \right | then
  • at least one of \displaystyle\ z_{1}, z_{2} is unimodular
  • both\displaystyle\ z_{1}, z_{2} are unimodular
  • \displaystyle\ z_{1}. z_{2} = 1
  • None of these
If \displaystyle u_{i}=1-\frac{1}{i} then \displaystyle u_{2}\cdot u_{3}\cdot ... \cdot u_{n} is equal to 
  • \displaystyle \frac{1}{n}
  • \displaystyle \frac{1}{n!}
  • 1
  • none of these
If \displaystyle z= 1+i\sqrt{3},then \displaystyle z^{6} equals
  • 32
  • -32
  • 64
  • None of these
Find the value of k for which given equation has real and equal roots.
(k\,-\,12)\,x^2\,+\,2\,(k\,-\,12)\,x\,+\,2\,=\,0
  • k\,=\,12
  • k\,=\,13
  • k\,=\,14
  • k\,=\,15
Determine the nature of the roots of the following equations from their discriminants.

y^2\,-\,4y\,-\,1\,=\,0
  • real and equal
  • real and unequal
  • complex
  • Cannot be determined
\text{arg(bi)}, \left( b>0 \right) is
  • \pi
  • \displaystyle \frac { \pi  }{ 2 }
  • \displaystyle -\frac { \pi  }{ 2 }
  • 0
The locus of \displaystyle z= x+iy which satisfying the inequality \displaystyle \log_{1/2}\left | z-1 \right |> \log_{1/2}\left | z-i \right | is given by
  • \displaystyle x+y< 0
  • \displaystyle x-y> 0
  • \displaystyle x-y< 0
  • \displaystyle x+y> 0
\left| { z }_{ 1 }+{ z }_{ 2 } \right| =\left| { z }_{ 1 } \right| +\left| { z }_{ 2 } \right| is possible if 
  • { z }_{ 2 }=\overline { { z }_{ 1 } }
  • \displaystyle { z }_{ 2 }=\frac { 1 }{ { z }_{ 1 } }
  • arg{ z }_{ 1 }=arg{ z }_{ 2 }
  • \left| { z }_{ 1 } \right| =\left| { z }_{ 2 } \right|
If arg \displaystyle z < 0 then arg \displaystyle \left (-z  \right )- arg z is equal to
  • \displaystyle \pi
  • \displaystyle -\pi
  • \displaystyle -\frac{\pi }{2}
  • \displaystyle \frac{\pi }{2}
If \displaystyle z=1+i\cot\alpha,-\frac{\pi}{2}<\alpha<0, then |z| is equal to 
  • cosec\alpha
  • -cosec\alpha
  • cosec\alpha or -cosec\alpha
  • none of these
A quadratic equation with rational coefficients can have
  • both roots equal and irrational
  • one root rational and other irrational
  • one root real and other imaginary
  • none of these
\displaystyle \left [ \left ( \cos \theta +i \sin \theta \right )\left ( \cos \theta -i\sin \theta  \right ) \right ]^{-1}
  • \displaystyle i
  • \displaystyle 1
  • \displaystyle -i
  • \displaystyle -1
The inequality |z-4| < |z-2| represents the region given by 
  • Re(z) > 1
  • Re(z) < 2
  • Re(z) > 0
  • None of these
Solve:
\displaystyle \left ( x+iy \right )\left ( 2-3i \right )= 4+i
  • \displaystyle x= \left ( 8/13 \right ), y= -\left ( 14/13 \right ).
  • \displaystyle x= \left ( 5/13 \right ), y= \left ( 14/13 \right ).
  • \displaystyle x= -\left ( 14/13 \right ), y= \left ( 5/13 \right ).
  • \displaystyle x= \left ( 14/13 \right ), y=- \left ( 8/13 \right ).
Solve : (2-\sqrt{-100})(1+\sqrt{-36})
  • 62+2i
  • 52+2i
  • -52+2i
  • -88+2i
Find arg(\displaystyle 1+\sqrt{2}+i)
  • \displaystyle \pi /16.
  • \displaystyle \pi /8.
  • \displaystyle \pi /12.
  • \displaystyle \pi /10.
Determine the nature of roots of the following equation from the discriminant:
y^{2}\, -\, 5y\, +\, 11\, =\, 0
  • Real and equal
  • Real and unequal
  • nonreal.
  • None of these
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them.
\displaystyle 2x^2 - 3x + 5 =0
  • x=0 and x=-2
  • x=3, x=-6
  • No real root.
  • None of these
Find the value of p for which the quadratic equation x^2 + p(4x + p - 1) + 2 = 0 has equal roots ?
  • \displaystyle -1, \frac{2}{3}
  • 3 , 5
  • \displaystyle -1, \frac{4}{3}
  • \displaystyle \frac{3}{4}, 2
Find the values of k for each of the following quadratic equation, so that they have two real equal roots.
\displaystyle 2x^2 + kx + 3 =0
  • k=\pm 2\sqrt{3}
  • k=\pm \sqrt{3}
  • k=\pm 2\sqrt{6}
  • k=\pm \sqrt{6}
The nature of the roots of the equation x^2 - 5x + 7 = 0 is
  • No real roots
  • 1 real root and 1 imaginary
  • Real and unequal
  • Real and equal
The equation x^2 - px + q = 0\  p, q \in R has no real roots if 
  • p^2 > 4q
  • p^2 < 4q
  • p^2 = 4q
  • None of these
Find the roots of the following quadratic equation by using the quadratic formula
4x^2 + 3x + 5 =0
  • \displaystyle \frac { 3\pm \sqrt { 71 } i }{ 8 }
  • \displaystyle \frac { 3\pm \sqrt { 89 } i }{ 8 }
  • \displaystyle \frac { -3\pm \sqrt { 71 } i }{ 8 }
  • \displaystyle \frac { -3\pm \sqrt { 89 } i }{ 8 }
ax^2 + bx + c = 0, where a, b, c are real, has real roots if 
  • a, b, c are integers
  • b^2> 3ac
  • ac > 0 
  • c = 0
If p, q, r are real and \displaystyle p\neq q, then roots of the equation \displaystyle \left ( p-q \right )x^{2}+5\left ( p+q \right )x-2\left ( p-q \right )=0 are
  • Real and equal
  • Complex
  • Real and unequal
  • None of these
The roots of a^2x^2 + abx = b^2, a \neq 0, b \neq 0 are:
  • Equal
  • Non- real
  • Unequal
  • None of these
If -2 is a root of the quadratic equation x^2 + px + 2 = 0 and the quadratic equation 2x^2 + px+ k = 0 has equal roots, find the value of k.
  • \displaystyle k = \frac{8}{9}
  • \displaystyle k = -\frac{8}{9}
  • \displaystyle k = -\frac{9}{8}
  • \displaystyle k = \frac{9}{8}
If z = re^{i\theta}, then the value of |e^{iz}| is equal to
  • e^{rcos\theta}
  • e^{-rcos\theta}
  • e^{rsin\theta}
  • e^{-rsin\theta}
Find the discriminant of the equation and the nature of roots. Also find the roots.
6x^2 + x - 2 = 0
  • D=49, Real and distinct roots: \displaystyle \frac{1}{5}, \frac{-2}{3}
  • D=39Real and distinct roots: \displaystyle \frac{1}{2}, \frac{-2}{3}
  • D=49Real and distinct roots: \displaystyle \frac{1}{3}, \frac{-7}{3}
  • D=49Real and distinct roots: \displaystyle \frac{1}{2}, \frac{-2}{3}
Find the modulus and amplitude of -2i
  • |z|=2; amp(z)=-\dfrac {3\pi}{2}
  • |z|=2i; amp(z)=\dfrac {\pi}{2}
  • |z|=2; amp(z)=\dfrac {\pi}{2}
  • |z|=2; amp(z)=-\dfrac {\pi}{2}
Find the modulus and amplitude of -2 + 2 \sqrt 3i
  • |z|=2\sqrt [ 2 ]{ 2 } ; amp(z)=\dfrac {\pi}{3}
  • |z|=2\sqrt [ 2 ]{ 2 } ; amp(z)=\dfrac {2\pi}{3}
  • |z|=4; amp(z)=\dfrac {2\pi}{3}
  • |z|=4; amp(z)=\dfrac {\pi}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers