Explanation
The amplitude of$$\displaystyle sin \frac{\pi}{5} + i \left ( 1 - cos \frac{\pi}{5} \right )$$
$$\textbf{Step-1: Expanding the terms}$$
$${{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2}}+{{i}^{n+3}}$$
$$= {{i}^{n}}+{{i}^{n}}.i+{{i}^{n}}.{{i}^{2}}+{{i}^{n}}.{{i}^{3}}$$
$$\textbf{Step-2: Taking } \mathbf{{i}^{n}} \textbf{ common}$$
$$= {{i}^{n}}(1+i+{{i}^{2}}+{{i}^{3}})$$
$$= {{i}^{n}}(1+i-1-i) $$ $$\mathbf{[\because {{i}^{2}}=-1,{{i}^{3}}=-i]}$$
$$= {{i}^{n}}(0)=0$$
$$\textbf{Hence the correct option is (C) 0}$$
Please disable the adBlock and continue. Thank you.