Processing math: 1%

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 6 - MCQExams.com

If quadratic equation 6x27x+2=0 has one root 12 then the second root will be--
  • 12
  • 23
  • 32
  • 1
The sum of the roots of  \displaystyle \frac{1}{x+a}+\frac{1}{x+b}=\frac{1}{c}   is zero. The product of the roots is
  • \displaystyle -\frac{1}{2}(a^{2}+b^{2})
  • 0
  • \displaystyle \frac{1}{2}(a+b)
  • \displaystyle 2(a^{2}+b^{2})
Find the value of P for which the following equation has equal roots \displaystyle { px }^{ 2 }-8x+2p=0 
  • \displaystyle \pm 2\sqrt { 2 }
  • \displaystyle \pm \sqrt { 2 }
  • \displaystyle \pm \sqrt { 3 }
  • \displaystyle \pm 2\sqrt { 3 }
The roots of the equation {2x^{2 }+ 3x + 2} = 0 are
  • Real, rational, and equal
  • Real,rational and unequal
  • Real, irrational, and unequal
  • non real (imaginary)
Find the product. Write the answer in standard form.
i\left( 6-2i \right) \left( 7-5i \right)
  • 52+16i
  • 10{i}^{3}+44{i}^{2}+42i
  • -44-32i
  • 44+32i
Which of the following statements has the truth value 'F'?
  • A quadratic equation has always a real root
  • The number of ways of seating 2 persons in two chairs out of n persons in P(n,2)
  • The cube roots of unity are in GP
  • None of the above
The imaginary number i is defined such that i^2=-1. What is the value of (1 - i \sqrt {5}) ( 1 + i\sqrt {5})?
  • \sqrt5
  • 5
  • 6
  • \sqrt6
The product of (3-2i) and \left(\dfrac { 5 }{ 2 } -4i\right), if i=\sqrt { -1 } , is:
  • -\dfrac { 1 }{ 2 } -17i
  • 14+\dfrac{9}{2}i
  • 2-8i-14{i}^{2}
  • i\left(8+\dfrac{9}{2}\right)
The argument of \dfrac {1 + i\sqrt {3}}{\sqrt {3} + i} is
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{4}
  • \dfrac {2\pi}{3}
  • \dfrac {\pi}{6}
The principal amplitude of \displaystyle { \left( \sin { { 40 }^{ \circ  }+i\cos { { 40 }^{ \circ  } }  }  \right)  }^{ 5 } is
  • \displaystyle { 70 }^{ \circ }
  • \displaystyle { -110 }^{ \circ }
  • \displaystyle { 110 }^{ \circ }
  • \displaystyle { -70 }^{ \circ }
Let { X }_{ n }=\left\{ z=x+iy:{ \left| z \right|  }^{ 2 } \le \dfrac { 1 }{ n }  \right\} for all integers n\ge 1. Then, \displaystyle\bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } is
  • A singleton set
  • Not a finite set
  • An empty set
  • A finite set with more than one element
The modulus of \dfrac { 1-i }{ 3+i } +\dfrac { 4i }{ 5 } is
  • \sqrt { 5 } unit
  • \dfrac { \sqrt { 11 } }{ 5 } unit
  • \dfrac { \sqrt { 5 } }{ 5 } unit
  • \dfrac { \sqrt { 12 } }{ 5 } unit
Simplify (2+8i)(1-4i)-(3-2i)(6+4i)
 (Note:i=\sqrt{-1})
  • 8
  • 26
  • 34
  • 50
\displaystyle \left|\dfrac{\sqrt{3}+i}{(1+i)(1+\sqrt{3}i)}\right|=
  • 1
  • \sqrt{2}
  • \dfrac{1}{2}
  • \dfrac{1}{\sqrt{2}}
What is the approximate magnitude of 8 + 4i?
  • 4.15
  • 8.94
  • 12.00
  • 18.64
  • 32.00
Find the value of k for which the number lies between the roots of the equation { k }^{ 2 }+(1-2k)x+({ x }^{ 2 }-k-2)=0.
  • 3< k< 4
  • 3< k< 5
  • 2< k< 6
  • 2< k< 5
Given that 4 is a root of the quadratic equation {x}^{2}-5x+q=0. Find the value of q and the other root.
  • 4 and 1 respectively
  • 1 and 4 respectively
  • 4 and 3 respectively
  • 3 and 1 respectively
The real part of { \left( 1-\cos { \theta  } +i\sin { \theta  }  \right)  }^{ -1 } is
  • \cfrac{1}{2}
  • \cfrac { 1 }{ 1+\cos { \theta } }
  • \tan { \cfrac { \theta }{ 2 } }
  • \cot { \cfrac { \theta }{ 2 } }
If z = \dfrac {(\sqrt {3} + i)^{3} (3i + 4)^{2}}{(8 + 6i)^{2}}, then |z| is equal to
  • 0
  • 1
  • 2
  • 3
If the roots of the equations ax^{2} + 2bx + c = 0 and bx^{2} - 2\sqrt {ac} x + b = 0 are simultaneously real, then
  • b^{2} = 4ac
  • b^{2} = ac
  • 2b^{2} = 9ac
  • none
If the roots of the equation { x }^{ 2 }+2(3a+5)x+2(9{ a }^{ 2 }+25)=0 are real, then find a.
  • \cfrac{5}{3}
  • \cfrac{7}{3}
  • \cfrac{2}{3}
  • None of these
For what values of 'k', the equation x^{2} + 2(k - 4) x + 2k = 0 has equal roots?
  • 8, 2
  • 6, 4
  • 12, 2
  • 10, 4
What is the smallest integral value of k such that 2x (kx - 4) - x^{2} + 6 = 0 has no real roots?
  • -1
  • 2
  • 3
  • 4
Perform the indicated operations:
(5+3i)(3-2i)
  • 21-2i
  • 19-3i
  • 11-2i
  • 21-i
The roots of the equation (b+c)x^2-(a+b+c)x+a=0 (a,b,c\ \epsilon \ Q, b+c \neq a) are
  • irrational and different
  • rational and different
  • imaginary and different
  • real and equal
The number of real roots of \left (x+\dfrac{1}{x}\right)^2-4=0 is
  • 0
  • 2
  • 4
  • none of these
If the argument of a complex number is \cfrac { \pi  }{ 2 } , then the number is:
  • Purely imaginary
  • Purely real
  • 0
  • Neither real nor imaginary
Given : u = 1+i \sqrt{3} and v = \sqrt{3} + i

Calculate \dfrac{u^3 }{ v^4}

  • (1/4) - i \sqrt{1/4}
  • (3/4) - i \sqrt{3}/4
  • (1/4) - i \sqrt{3}/4
  • none of these
If \overline { z } lies in the third quadrant then z lies in the
  • First quadrant
  • Second quadrant
  • Third quadrant
  • Fourth quadrant
If l,m,n are real and l \neq m, the roots of the equation (l-m)x^2-5(l+m)x-2(l-m)=0 are-
  • complex
  • real and equal
  • real and unequal
  • none of these
If arg(z) < 0, then arg(-z)-arg(z)=
  • \pi
  • -\pi
  • \dfrac{\pi}{2}
  • -\dfrac{\pi}{2}
If Arg (z + i)\, - Arg (z - i) = \dfrac{\pi}{2}, then z lies on a ..........
  • Circle
  • Line
  • Coordinate axes
  • None of these
Determine the nature of the roots of the equation:
x^2-8x+12=0
  • Real and unequal
  • Real and equal
  • Imaginary
  • None of these
The complex number z satisfying the equation |z - i| = |z + 1| = 1 is
  • 0
  • 1 + i
  • -1 + i
  • 1 - i
If \left( \dfrac{1 + i}{1 - i} \right)^m = 1, then the least positive integral value of m is
  • 1
  • 4
  • 2
  • 3
The roots of the equation { x }^{ 2 }-8x+16=0
  • Are imaginary
  • Are distinct and real
  • Are equal and real
  • Cannot be ascertained
If p, q are odd integers, then the roots of the equation 2px^{2} + (2p + q) x + q = 0 are
  • Rational
  • Irrational
  • Non-real
  • Equal
The quadratic equation { x }^{ 2 }+bx+4=0 will have real roots if
  • b\le -4 only
  • b\ge 4 only
  • -4 < b < 4
  • b\le -4,b\ge 4
The principal argument of the complex number z=\cfrac { 1+\sin { \cfrac { \pi  }{ 3 }  } +i\cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  } -i\cos { \cfrac { \pi  }{ 3 }  }  } is?
  • \cfrac { \pi }{ 3 }
  • \cfrac { \pi }{ 6 }
  • \cfrac { 2\pi }{ 3 }
  • \cfrac { \pi }{ 2 }
  • \cfrac { \pi }{ 4 }
If iz^{3} + z^{2} - z + i = 0, then |z| is equal to
  • 0
  • 1
  • 2
  • None of these
Let z = \cos\theta + i \sin\theta. Then the value of \sum\limits_{m=1}^15Im( z^{2m-1}) at \theta = 2^0 is 
  • \dfrac{1}{sin2^0}
  • \dfrac{1}{3sin2^0}
  • \dfrac{1}{2sin2^0}
  • \dfrac{1}{4sin2^0}
If z is a complex number such that z + |z| = 8 + 12i, then the value of |z^{2}| is
  • 228
  • 144
  • 121
  • 169
  • 189
If z=1+i, then the argument of { z }^{ 2 }{ e }^{ z-i } is
  • \dfrac { \pi }{ 2 }
  • \dfrac { \pi }{ 6 }
  • \dfrac { \pi }{ 4 }
  • \dfrac { \pi }{ 3 }
  • 0
If z + \sqrt {2}|z + 1| + i = 0 and z = x + iy, then
  • x = -2
  • x = 2
  • y = -2
  • y = 1
The principal value of arg(z) lies in the interval:
  • \left[ 0,\cfrac { \pi }{ 2 } \right]
  • (-\pi ,\pi ]
  • \left[ 0,\pi \right]
  • (-\pi ,0]
Let P(e^{i\theta_1})Q(e^{i\theta_2})  and  R(e^{i\theta_3}) be the vertices of a triangle PQR in the Argand Plane. The orthocenter of the triangle PQR is 
  • 2e^(\theta_1+\theta_2+\theta_3)
  • \frac{2}{3}e^({\theta_1+\theta_2+\theta_3})
  • e^{\theta_1}+e^{\theta_2}+e^{\theta_3}
  • None of these
If (1 - i\sqrt {3})^{2} (z) (4i) = (1 + i\sqrt {3}), then Amp\ z is
  • \pi
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{3}
  • 0
Which of the given alternatives represent a point in Argand plane, equidistant from roots of the equation (z+1)^4= 16z^4?
  • (0,0)
  • \left(-\dfrac{1}{3},0\right)
  • \left(\dfrac{1}{3},0\right)
  • \left(0,\dfrac{2}{\sqrt5}\right)
Let z,\omega be complex numbers such that \vec{z}+i\vec{\omega}=0 and Arg(z\omega)=\pi then Arg(z)=.
  • \displaystyle\frac{\pi}{4}
  • \displaystyle\frac{5\pi}{4}
  • \displaystyle\frac{3\pi}{4}
  • \displaystyle\frac{\pi}{2}
Study the statements carefully.
Statement I: Both the roots of the equation x^2-x+1=0 are real.
Statement II: The roots of the equation ax^2+bx+c=0 are real if and only if b^2-4ac \geq 0.
Which of the following options hold?
  • Both Statement I and Statement II are true
  • Both Statement I and Statement II are false
  • Statement I is true and Statement II is false
  • Statement I is false and Statement II is true
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers