Processing math: 1%

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 7 - MCQExams.com

If 'ω' is a complex cube root of unity,then ω(13+29+427...)+ω(12+38+932...)=
  • 1
  • 1
  • ω
  • i
Find a complex number z satisfying the equation z+\sqrt{2}|z+1|+i=0
  • 2-i
  • -2-i
  • \sqrt{2}-i
  • None of these
Consider the quadratic equation nx^{2} + 7\sqrt {n}x + n = 0, where n is a positive integer. Which of the following statements are necessarily correct?
I. For any n, the roots are distinct.
II. There are infinitely many values of n for which both roots are real.
III. The product of the roots is necessarily an integer.
  • III only
  • I and III only
  • II and III only
  • I, II and III
If {z}_{1}=-3+5i;{z}_{2}=-5-3i and z is a complex number lying on the line segment joining {z}_{1} and {z}_{2}, then arg(z) can be:
  • -\cfrac { 3\pi }{ 4 }
  • -\cfrac { \pi }{ 4 }
  • \cfrac { \pi }{ 6 }
  • \cfrac { 5\pi }{ 6 }
If \dfrac {lz_{2}}{mz_{1}} is purely imaginary number, then \left |\dfrac {\lambda z_{1} + \mu z_{2}}{\lambda z_{1} - \mu z_{2}}\right | is equal to
  • \dfrac {l}{m}
  • \dfrac {\lambda}{\mu}
  • \dfrac {-\lambda}{\mu}
  • 1
The complex number  \dfrac{1+2i}{1-i} lies in which quadrant of the compiles plan
  • First
  • Second
  • Third
  • Fourth
If in applying the quardratic formula to a quadratic equation
f(x) = ax^2 + bx + c = 0, it happens that c = b^2/4a, then the graph of y = f(x) will certainly:
  • have a maximum
  • have a minimum
  • tangent to the x-axis
  • be tangent to the y-axis
  • lie in one quadrant only
The real and imaginary part of the complex number 1 + \sqrt {i} where i = \sqrt {-1} are
  • 1 - \dfrac {1}{\sqrt {2}} and -\dfrac {1}{\sqrt {2}} respectively
  • 1 - \dfrac {1}{\sqrt {2}} and \dfrac {1}{\sqrt {2}} respectively
  • 1 + \dfrac {1}{\sqrt {2}} and \dfrac {1}{\sqrt {2}} respectively
  • 1 + \dfrac {1}{\sqrt {2}} and -\dfrac {1}{\sqrt {2}} respectively
The given quadratic equations have real roots and the roots are equal and that is \dfrac{1}{\sqrt2}  :
2x^2 \, - \, 2\sqrt{2}x \, + \, 1 \, = \, 0
  • True
  • False
The given quadratic equation have real roots and roots are \dfrac{\sqrt5}{3}, \, -\sqrt5 :
 3x^2 \, + \, 2\sqrt{5x} \, - \, 5 \, = \, 0
  • True
  • False
The roots of the following quadratic equation are Real and equal. 
3x^2-4\sqrt3x+4=0
  • True
  • False
The given quadratic equations have real roots and the roots are -\sqrt2, \, \dfrac{-5}{\sqrt2} :
\sqrt{2}x^2 \, + \, 7x \, + \, 5\sqrt{2} \, = \, 0
  • True
  • False
In the following, determine whether the given quadratic equations have real roots and if so, find the roots :
16x^2 = 24x + 1
  • \text{not real}
  • real,\dfrac{3 \, \pm \, \sqrt{10}}{4}
  • \dfrac{3 \, \pm \, \sqrt{10}}{2}
  • \dfrac{3 \, \pm \, \sqrt{13}}{4}
The given quadratic equations have real roots and the roots are equal and it is 1:
x^2 - 2x + 1 = 0
  • True
  • False
The roots of the following quadratic equation Real and equal.
 3x^2 - 2\sqrt{6}x + 2 = 0
  • True
  • False
The discrimination of the equation x^2 + 2x\sqrt3 + 3 = 0 is zero. Hence, its roots are:
  • Real and Equal
  • Rational and Equal
  • Rational and Unequal
  • Irrational and Unequal
  • Imaginary
The roots of the following quadratic equation are Not real
2(a^2 + b^2)x^2 + 2(a + b) x + 1 = 0
  • True
  • False
The complex number x+iy whose modulus is unity, y\neq 0, can be represented as x+iy=\dfrac { a+i }{ a-i },  where a is real number.
  • True
  • False
If \mid{z_1}\mid=2, \mid{z_2}\mid=3, \mid{z_3}\mid=4 and \mid{z_1+z_2+z_3}\mid=2, then the value of \mid{4z_2z_3+9z_3z_1+16z_1z_2}\mid.
  • 24
  • 48
  • 96
  • 120
Evaluate:
{ \left( \dfrac { cos\dfrac { \pi  }{ 8 } -isin\dfrac { \pi  }{ 8 }  }{ cos\dfrac { \pi  }{ 8 } +isin\dfrac { \pi  }{ 8 }  }  \right)  }^{ 4 }
  • 1
  • -1
  • 2
  • \dfrac { 1 }{ 2 }
Let z_1 and z_2 are two complex numbers such that (1-i)z_1=2z_2 and arg(z_1z_2)=\dfrac{\pi}{2} then arg(z_2) is equals to:
  • \dfrac{3 \pi}{8}
  • \dfrac{\pi}{8}
  • \dfrac{5 \pi}{8}
  • \dfrac{-7 \pi}{8}

Let z be a complex number such that \left| z+\dfrac { 1 }{ z }  \right| =2

If \left| z \right| ={ r }_{ 1 } and \left| \dfrac { 1 }{ z }  \right| = {r}_{2} for \arg z=\dfrac { \pi  }{ 4 } then 

\left| { r }_{ 1 }-{ r }_{ 2 } \right| =

  • \dfrac { 1 }{ \sqrt { 2 } }
  • 1
  • \sqrt { 2 }
  • 2
If {z}_{1}=1+2i,\ {z}_{2}=2+3i,\ {z}_{3}=3+4i, then {z}_{1},\ {z}_{2} and {z}_{3} are collinear.
  • True
  • False
If {z_1} and {z_2} are two non-zero complex number such that \left| {{{{z_1}} \over {{z_2}}}} \right| = 2 and \arg \left( {{z_1}{z_2}} \right) = {{3\pi } \over 2} , then {{\overline {{z_1}} } \over {{z_2}}} is equal to 
  • 2i
  • -2
  • -2i
  • 2
When will the quadratic equation ax^2+bx+c=0 have Real Roots?
  • b^2- 4ac \ge 0
  • b^2-4ac \le 0
  • b^2-4ac < 0
  • None of the above.

If the value of 'b^2-4ac'is equal to zero, the quadratic equation ax^2+bx+c=0 will have


  • Two real roots which are equal
  • Two Distinct Real Roots.
  • No Real Roots.
  • No Roots or Solutions.
If z satisfies \left| {z - 1} \right| < \left| {z + 3} \right| then w = 2z + 3 - i , ( where w = 2z + 3 - i ) satisfies:
  • \left| {w - 5 - i} \right| < \left| {w + 3i} \right|
  • \left| {w - 5} \right| < \left| {w + 3} \right|
  •  \left( {iw} \right) > 1
  • \left| {\arg \left( {w - 1} \right)} \right| < {\pi  \over 2}
If the equation { x }^{ 2 }+nx+n=0,n\epsilon I, has integral roots then { n }^{ 2 }-4n can assume

  • no integral value
  • one integral value
  • two integral value
  • three integral value
Real part of  \dfrac{(1 + i)^2}{3 - i} =
  • -1/5
  • 1/5
  • 1/10
  • -1/10
If \dfrac{2z_1}{3z_2} is a purely imaginary number,then \left|\dfrac{z_1-z_2}{z_1+z_2}\right|=
  • 3/2
  • 1
  • 2/3
  • 4/9
The value of \dfrac{1}{i} + \dfrac{1}{{{i^2}}} + \dfrac{1}{{{i^3}}} + ... + \dfrac{1}{{i^{102}}} is equal to 
  • - 1 - i
  • - 1 + i
  • 1 - i
  • 1 + i
Find the real number x if (x-2i)(1+i) is purely imaginary.
  • 2
  • -2
  • 4
  • -4
i \, \log \left(\dfrac{x - i}{x + i}\right) is equal to
  • 2i\log (x-i)-i\log (x^2+1)
  • 2i\log (x-i)+i\log (x^2+1)
  • 2i\log (x+i)-3i\log (x^2+1)
  • 2i\log (x-i)-i\log (x^2+i)
If i^2= -1, then 1+ i^2+ i^4 +i^6+i^8 +.............to ( 2n +1) terms is equal to
  • 0
  • 1
  • 3i
  • 4i
If roots of equation 2{x}^{2}+bx+c=0;b,c\in R, are real & distinct then the roots of equation 2{cx}^{2}+(b-4c)x+2c-b+1=0 are
  • imaginary
  • equal
  • real and distinct
  • cant say

A particle starts from a point z_0= I + i, where i =\sqrt{-1} It moves horizontally away from origin by 2 units and then
vertically away from origin by 3 units to reach a point z_1. From z_1
particle moves \sqrt{5} units in the direction of 2\hat i + \hat j and
then it moves through an angle of \cos e{c^{ - 1}}\sqrt 2 in anticlockwise
direction of a circle with centre at origin to reach a point z_2 . The arg z_2 is given by

  • {\sec ^{ - 1}}2
  • {\cot ^{ - 1}}0
  • {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)
  • {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)
The probability of choosing randomly a number c from the set \{1, 2, 3, ..........9\} such that the quadratic equation x^2+ 4x +c=0 has real roots is:
  • \dfrac{1}{9}
  • \dfrac{2}{9}
  • \dfrac{3}{9}
  • \dfrac{4}{9}
If a,b,c are integers and { b }^{ 2 }=4\left( ac+{ 5d }^{ 2 } \right), \in, then roots of the quadratic equation { ax }^{ 2 }+bx+c=0 are 
  • Irrational
  • Rational and different
  • Complex conjugate
  • Rational and equal
If a+ ib= \sum_{k=1}^{101} i^k , then (a, b) equals 
  • (0, 1)
  • (1, 0)
  • (0,- 1)
  • (1, 1)
If z = -3- i, find |z|.
  • \sqrt{10}
  • \sqrt{9}
  • \sqrt{8}
  • \sqrt{7}
The modulus of the complex number z=\dfrac{1-i}{3-4i} is
  • \dfrac{5}{\sqrt{2}}
  • \dfrac{\sqrt{2}}{5}
  • \sqrt{\dfrac{2}{5}}
  • none of these

(A) Which of the following quadratic polynomials has zeros
-9 and 9 

  • x-81=0
  • {x^2} - 9=0
  • {x^2} - 64=0
  • {x^2} - 81=0
Let z be a complex number such that z\in c\ R and \dfrac{1+z+z^2}{1-z+z^2}\in R, then  |z|=3.
  • True
  • False
If z=\dfrac{1+i}{\sqrt{2}}, then the value of z^{1929} is
  • 1+i
  • -1
  • \dfrac{1+i}{2}
  • \dfrac{1+i}{\sqrt{2}}
The equation 4\sin^2x+4\sin x+a^2-3=0 possesses a solution if 'a' belongs to the interval.
  • (-1, 3)
  • (-3, 1)
  • [-2, 2]
  • R-(-2, 2)
If |Z|=2,|z_{2}|=3,|z_{3}=4| and |z_{1}+z_{2}+z_{3}|=5 then |4z_{2}z_{3}+9z_{3}z_{1}+16z_{1}z_{2}|=
  • 20
  • 24
  • 48
  • 120
If \dfrac{x - 3}{3 + i} + \dfrac{y - 3}{3 - i} = i where x , y \in R then
  • x = 2 & y = -8
  • x = -2 & y = 8
  • x = -2 & y = -6
  • x = 2 & y = 8
The complex number \dfrac{1 + 2i}{1 - i} lies in which quadrant of the complex plane.
  • First
  • Second
  • Third
  • Fourth
Given \left| z \right| =4 and Argz=\dfrac{5z}{6}, then z is
  • 2\sqrt{3}+2i
  • 2\sqrt{3}-2i
  • -2\sqrt{3}+2i
  • -\sqrt{3}+i
If a < b < c < d, then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are?
  • Real and distinct
  • Real and equal
  • Imaginary
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers