Explanation
We have,
$${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{8n}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{8n}}$$
$$ {{\left[ {{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{2}} \right]}^{4n}}+{{\left[ {{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{2}} \right]}^{4n}} $$
$$ ={{\left[ \dfrac{{{1}^{2}}+{{i}^{2}}+2i}{2} \right]}^{4n}}+{{\left[ \dfrac{{{1}^{2}}+{{i}^{2}}-2i}{2} \right]}^{4n}} $$
$$ ={{\left[ \dfrac{1-1+2i}{2} \right]}^{4n}}+{{\left[ \dfrac{1-1-2i}{2} \right]}^{4n}} $$
$$ ={{\left( {{i}^{4}} \right)}^{n}}+{{\left( {{\left( -i \right)}^{4}} \right)}^{n}} $$
$$ ={{1}^{n}}+{{1}^{n}} $$
$$ =1+1 $$
$$ =2 $$
For a complex number $$z$$, the minimum value of $$\left| z \right| + \left| {z - 1} \right|$$ is
The value of $$\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} $$, where $$i = \sqrt { - 1} $$ equals:
In Argand diagram, O, P, Q represents the origin, $$z$$ and $$z+iz$$respectively. then $$\angle OPQ = $$
Consider the following question.
$$ Z=\dfrac{1-\sqrt{3}i}{1+\sqrt{3i}} $$
$$ =\dfrac{\left( 1-\sqrt{3}i \right)}{\left( 1+\sqrt{3i} \right)}\times \dfrac{\left( 1-\sqrt{3}i \right)}{\left( 1-\sqrt{3}i \right)} $$
$$ =\dfrac{{{\left( 1-\sqrt{3}i \right)}^{2}}}{1+3} $$
$$ =\dfrac{1+3{{i}^{2}}-2\sqrt{3}}{4} $$
$$ =\dfrac{1-3-2\sqrt{3}}{4} $$
$$ =\dfrac{-1-i\sqrt{3}}{2} $$
$$ =-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} $$
$$ \arg \left( -\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right)=-\pi +\dfrac{\pi }{3} $$
$$ =\dfrac{2\pi }{3} $$
Hence, this is the required answer.
Please disable the adBlock and continue. Thank you.