Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 9 - MCQExams.com

If z1=8+4i, z2=6+4i and arg(zz1zz2)=π4, then z satisfy 
  • |z74i|=1
  • |z75i|=2
  • |z4i|=8
  • |z7i|=18
If a,bR, then |ea+ib| is equal to

  • ea
  • eb
  • 1
  • None of these
If z1 and z2 two non-zero complex number such that |z1+z2|=|z1|+|z2|, then argz1argz2 is equal to
  • p
  • p/2
  • p/2
  • 0
z is a complex number. If a=|x|+|y| and
b=2|x+iy| then which of the following is
true

  • ab
  • a>b
  • none of these
  • ab+2
If arg (z)<0, then arg (z)arg(z)
  • π
  • π
  • π2
  • π2
Number of complex numbers z such that |z|=1 and |zz+ˉzz|=1 is
  • 4
  • 1
  • 8
  • more then 8
The modulus of (3+2i)2(43i) is:
  • 135
  • 115
  • 95
  • 75
Let P(x)=x36x2+Bx+C has 1+5i as a zero and B,C real number, then value of (B+C) is
  • -70
  • 70
  • 24
  • 138
Arg {sin8π5+i(1+cos8π5)} is equal to
  • 3π10
  • 7π10
  • 4π5
  • 3π5
A value of θ for which2+3isinθ12isinθ is purely imaginary, is:
  • sin1(13)
  • π3
  • cos11
  • Noneofthese
Purely imaginary then find the sum of statement i a,b 
  • 5π6
  • π
  • 3π4
  • 2π3
If α and β are the roots of 4x216x+c=0, c>0 such that 1<α<2<β<3, then the no.of integer values of c is 
  • 17
  • 14
  • 18
  • 15
The principle amplitude of (sin40o+icos40o)5 is
  • 70o
  • 1100o
  • 70110
  • 7070
Let 'z' be a complex number satisfying |z2i|5, Then |z-14-6i| lies in 
  • {8,18}
  • {2,8}
  • {0,2}
  • {3,7}
If  w=zz13i  and  |w|=1  then  z  lies on
  • a circle
  • an ellipse
  • a parabola
  • a straight line
If the roots of the equation mx2+(2m1)x+m2=0 are rational, then if mI it will be 
  • odd integer
  • even integer
  • zero only
  • none of these
The discriminant of 2x2xp=0 is 49, then p= ______
  • 6
  • 24
  • 48
  • None of these
If |z3i|<5, then |i(z+1)+1|<25.
  • True
  • False
The value of the sum 13n=1(in+in+1) , where i=1 , equals
  • i
  • i1
  • i
  • 0
z1 and z2 are two non-zero complex numbers such that z1=2+4iz2=56i, then z2z1 equals
  • 310i
  • 3+10i
  • 72i
  • 1024i
IF z1=1+i,z2=1i find z1z2
  • z1+z2
  • z1z2
  • z1/z2
  • None.
If  z=cosπ4+isinπ6,  then
  • |z|=1,arg(z)=π4
  • |z|=1,arg(z)=π6
  • |z|=32,arg(z)=5π24
  • |z|=32,arg(z)=tan112
The real value of θ, for which the expression 1+icosθ12icosθ is a real number is
  • 2nπ+3π2,nI
  • 2nπ3π2,nI
  • 2nπ±π2,nI
  • 2nπ+π4,nI
Given z1+3z24z3=0 then z1,z2,z3 are
  • collinear
  • can form sides of equilateral Δ
  • lie on circle
  • none of these
The greatest and least value of |z| if z satisfies |z5+5i| 5 are 
  • 10 , 52
  • 52 , 5
  • 10 , 0
  • 5+52 , 525
If z be a complex number satisfying z4+z3+2z2+z+1=0 then |z|=
  • 12
  • 34
  • 1
  • none of these
The discriminant of the quadratic equation (2λ)x2+(a2)x8λ=0 where a,λ,N is surely 
  • A perfect square
  • A prime number
  • A composite number
  • An even number
Express the following complex numbers in the standard form a+ib :
(114i21+i)(34i5+i)
  • 307442+i599442i
  • 307442i599442i
  • 307442+i599442i
  • None of the above
Let z be a complex number such that the principal value of argument, arg z<0. Then arg(z)arg(z) is
  • π2
  • ±π
  • π
  • π
Express the following complex numbers in the standard form a+ib :
(2+i)32+3i
  • 37131613i
  • 3713+1613i
  • 3713+1613i
  • None of the above
The imaginary roots of the equation (x2+2)2+8x2=6x(x2+2) are ____________.
  • 1+i
  • 2±i
  • 1±i
  • noneofthese
Express the following complex numbers in the standard form a+ib :
34i(42i)(1+i)
  • 14+34i
  • 1434i
  • 1434i
  • None of the above
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
1i
  • 2(cosπ/4+isinπ/4)
  • 2(cosπ/3isinπ/3)
  • 2(cosπ/4isinπ/4)
  • 2(cosπ/3+isinπ/3)
If a and b are the nonzero distinct roots of x2+ax+b=0, then the minimum vlue of x2+ax+b is
  • 23
  • 94
  • 94
  • 23
Express the following complex numbers in the standard from a+ib :
5+2i12i
  • 122i
  • 1+2i
  • 1+22i
  • 12i
Let z be a complex number such that |ziz+2i|=1 and |z|=52. Then the value of |z+3i| is?
  • 72
  • 154
  • 23
  • 10
The real part of (i3)13 is
  • 2103
  • 2123
  • 2123
  • 2123
  • 2103
(11)(1+1)(57)(5+7)=?
  • (25+7i)
  • (32+5i)
  • (293i)
  • none of these
arg(1+i3)=?
  • π3
  • 2π3
  • π
  • none of these
(23i)(3+4i)=?
  • (6+17i)
  • (617i)
  • (6+17i)
  • none of these
arg(1+i)=?
  • π
  • π2
  • π3
  • π4
arg(2+63i5+3i)=?
  • π3
  • π4
  • 2π3
  • π
Let z,w be complex numbers such that ˉz+iˉw=0 and arg zw=π. then arg z equals
  • π4
  • π2
  • 3π4
  • 5π4
For any complex numbers z1 and z2 compare List I with with List II and choose the correct answer, using codes given below:
List IList II
arg(z1,z2)π2
arg(z1z2)arg(z1arg(z2)
arg(z)+arg(ˉz)arg(z1)+arg(z2)
arg(i)2π
  • (i)(q),(ii)(r),(iii)(s),(iv)(p)
  • (i)(r),(ii)(q),(iii)(p),(iv)(s)
  • (i)(r),(ii)(q),(iii)(s),(iv)(p)
  • none of these
The principal argument of the complex number 
[(1+i)5(1+3i)2]/[2i(3+i)] is
  • 19π12
  • 17π12
  • 5π12
  • 5π12
The argument and the principle value of the complex number 2+i4i+(1+i)2 are
  • tan1(2)
  • tan12
  • tan1(12)
  • tan1(12)
Compare List I with List II and choose the correct answer using codes given below:
List I (Complex number)List II (Its modulus)
(43i)10
(8+6i)15
1(3+4i)1
(34i)(3+4i)5
  • (i)(p),(ii)(s),(iii)(r),(iv)(q)
  • (i)(s),(ii)(p),(iii)(q),(iv)(r)
  • (i)(s),(ii)(p),(iii)(r),(iv)(q)
  • (i)(r),(ii)(p),(iii)(s),(iv)(q)
If b1b2=2(c1+c2), then at least one of the equations x2+b1x +c1=0 and x2+b2x+c2=0 has
  • imaginary roots
  • real roots
  • purely imaginary roots
  • none of these
Which of the following equations has no real roots.
  • x24x+32=0
  • x2+4x32=0
  • x24x32=0
  • 3x2+43x+4=0
The modulus and amplitude of the complex number [e3iπ4]3 are respectively.
  • e6,3π4
  • e9,π2
  • e9,3π4
  • e9,π2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers