Processing math: 11%

CBSE Questions for Class 11 Engineering Maths Conic Sections Quiz 1 - MCQExams.com

If the lines 2x+3y+1=0 and 3xy4=0 lie along diameters of a circle of circumference 10π, then the equation of the circle is: 
  • x2+y22x+2y23=0
  • x2+y22x2y23=0
  • x2+y2+2x+2y23=0
  • x2+y2+2x2y23=0
The circle x2+y28x=0 and hyperbola x29y24=1 intersect at the points A and B.
then the equation of the circle with AB as its diameter is
  • x2+y212x+24=0
  • x2+y2+12x+24=0
  • x2+y2+24x12=0
  • x2+y224x12=0
The length of the latus rectum of the parabola 169[(x1)2+(y3)2]=(5x12y+17)2 is:
  • 1413
  • 1213
  • 2813
  • none of these
Equation of the ellipse in its standard form is \displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1
  • True
  • False
  • Nither
  • Either
The equation of the circle touching x = 0, y = 0 and x = 4 is
  • x^2 + y^2 - 4x - 4y + 16 = 0
  • x^2 + y^2 - 8x - 8y + 16 = 0
  • x^2 + y^2 + 4x + 4y + 4 = 0
  • x^2 + y^2 - 4x - 4y + 4 = 0
The radius of the circle with center (0,0) and which passes through (-6,8) is
  • 5
  • 10
  • 6
  • 8
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
The equation of circle with its centre at the origin is x^2+y^2=r^2
  • True
  • False
  • Neither
  • Either
Which of the following equations of a circle has center at (1, -3) and radius of 5?
  • \displaystyle x^{2}+y^{2}=25
  • \displaystyle \left ( x-1 \right )^{2}+\left ( y+3 \right )^{2}=25
  • \displaystyle \left ( x-1 \right )^{2}+\left ( y-3 \right )^{2}=25
  • \displaystyle \left ( x+1 \right )^{2}+\left ( y-3 \right )^{2}=25
Determine the area enclosed by the curve \displaystyle x^{2}-10x+4y+y^{2}=196
  • 15\pi
  • 225\pi
  • 20\pi
  • 17\pi
The standard equation of circle at origin is
  • x^2+y^2=r^2
  • x^2-y^2=r
  • x^2+y^2=1
  • x^2+y^2=0
The diameter of a circle described by \displaystyle 9x^{2}+9y^{2}=16 is
  • \dfrac {16}9
  • \dfrac 43
  • 4
  • \dfrac 83
A circle has a diameter whose ends are at (-3, 2) and (12, -6) Its Equation is
  • \displaystyle 4x^{2}+4y^{2}-36x+16y+192=0
  • \displaystyle 4x^{2}+4y^{2}-36x+16y-192=0
  • \displaystyle 4x^{2}+4y^{2}-36x-16y-192=0
  • \displaystyle 4x^{2}+4y^{2}-36x-16y+192=0
What is the nature of the given graph?
517088_8a9b5c2904db443b8b64b96ae08c8fcd.png
  • The graph in symmetric about x-axis
  • The graph in symmetric about y-axis
  • Sum of x-intercept and y-intercept is greater than zero
  • The polynomial has 3 terms
Find the equation of a circle with center (0, 0) and radius 5.
  • x^2+y^2=5
  • x^2-y^2=25
  • x^2+y^2=25
  • (x-1)^2+(y+1)^2=25
What is the radius of the circle with the following equation?
\displaystyle x^{2}-6x+y^{2}-4y-12=0
  • 3.46
  • 5
  • 7
  • 6
The locus of a planet orbiting around the sun is: 
  • A circle
  • A straight line
  • A semicircle
  • An ellipse
Number of intersecting points of the conic 4x^{2} + 9y^{2} = 1 and 4x^{2} + y^{2} = 4 is
  • 1
  • 2
  • 3
  • 0 (zero)
The point (3,4) is the focus and 2x-3y+5=0 is the directrix of a parabola .Its latus rectum is 
  • \dfrac{2}{\sqrt{13}}
  • \dfrac{4}{\sqrt{13}}
  • \dfrac{1}{\sqrt{13}}
  • \dfrac{3}{\sqrt{13}}
The circle with radius 1 and centre being foot of the perpendicular from (5, 4) on y-axis, is?
  • x^2+y^2-8x-15=0
  • x^2+y^2-10x+24=0
  • x^2+y^2-8y+15=0
  • x^2+y^2+2y=0
Equation of the circle with centre on y-axis and passing through the points (1,0),(1,1) is:
  • { x }^{ 2 }+{ y }^{ 2 }-y-1=0
  • { x }^{ 2 }+{ y }^{ 2 }-x-1=0
  • { x }^{ 2 }+{ y }^{ 2 }-x+1=0\quad
  • { x }^{ 2 }+{ y }^{ 2 }-y+1=0
State whether the following statements are true or false.
The equation x^{2}+y^{2} + 2x -10y + 30 = 0 represents the equation of a circle.
  • True
  • False
The equation of the ellipse whose equation of directrix is 3x+4y-5=0, coordinates of the focus are (1,2) and the eccentricity is \dfrac{1}{2} is 91x^2+84y^2-24xy-170x-360y+475=0
  • True
  • False
Centres of the three circles
{x}^{2}+{y}^{2}-4x-6y-14=0 
{x}^{2}+{y}^{2}+2x+4y-5=0 and
{x}^{2}+{y}^{2}-10x-16y+7=0. The centres of the circles are:
  • are the vertices of a right angle
  • the vertices of an isosceles triangle which is not regular
  • vertices of a regular triangle
  • are collinear
The radius of the circle centred at (4,5) and passing through the centre of the circle {x}^{2}+{y}^{2}+4x+6y-12=0 is
  • 2\sqrt {5}
  • 2\sqrt {10}
  • 3\sqrt {5}
  • 3\sqrt {10}
Centre of circle whose normal's are x^{2}-2xy-3x+6y=0, is 
  • \left(3,\ \dfrac{3}{2}\right)
  • \left(3,\ -\dfrac{3}{2}\right)
  • \left(\dfrac{3}{2},\ 3\right)
  • None\ of\ these
The centre of the circle x^2+y^2+10x-20y+100=0 is 
  • (5,10)
  • (-5,10)
  • (-5,-10)
  • (5,-10)
The length of the diameter of the circle {x^2} + {y^2} - 4x - 6y + 4 = 0
  • 9
  • 3
  • 4
  • 6
which of the following equations represents a parabola 
  • {\left( {x - y} \right)^3} = 3
  • \frac{x}{y} - \frac{y}{x} = 0
  • \frac{x}{y} + \frac{4}{x} = 0
  • {\left( {x + y} \right)^2} + 3 = 0
The locus of a point which is at a constant distance 5 from the fixed point (2,3) is:
  • {x^2} + {y^2} - 4x - 6y - 12 = 0
  • {x^2} + {y^2} + 4x - 6y - 12 = 0
  • {x^2} + {y^2} + 4x + 6y + 12 = 0
  • {x^2} + {y^2} - 4x - 6y + 12 = 0
The equation of the circle passing through (3, 6) and whose centre is (2, -1) is 
  • {x^2} + {y^2} - 4x + 2y = 45
  • {x^2} + {y^2} - 2y + 45 = 0
  • {x^2} + {y^2} + 4x - 2y = 45
  • {x^2} + {y^2} + 2y + 45 = 0
Find the equation of the circle : 
Centered at (3,-2) with radius 4
  • x^2+y^2+6x-4y=3
  • x^2+y^2-6x+4y=3
  • x^2+y^2-3x+2y=-3
  • x^2+y^2+3x-2y=-3
The equation to the circle with centre (2,1) and touches the line 3x+4y-5 is ?
  • x^{2}+y^{2}-4x-2y+5=0
  • x^{2}+y^{2}-4x-2y-5=0
  • x^{2}+y^{2}-4x-2y+4=0
  • x^{2}+y^{2}-4x-2y-4=0
If the vertices of a triangle are (2, -2), (-1, -1) and (5, 2) then the equation of its circumcircle is?
  • x^2+y^2+3x+3y+8=0
  • x^2+y^2-3x-3y-8=0
  • x^2+y^2-3x+3y+8=0
  • None of these
Length of the latus rectum of the hyperbola xy=c^{2}, is
  • 2c
  • \sqrt{2}c
  • 2\sqrt{2}c
  • 4c
For what value of k, does the equation 9{x^2} + {y^2} = k\left( {{x^2} - {y^2} - 2x} \right) represents equation of a circle?
  • 1
  • 2
  • -1
  • 4
The length of latus recturn of the hyperbola
{ 9x }^{ 2 }-16{ y }^{ 2\quad }+72x-32y-16=0
  • \dfrac { 9 }{ 2 }
  • \dfrac {- 9 }{ 2 }
  • \dfrac { 32 }{ 3 }
  • \dfrac { -32 }{ 2 }
Equation of the hyperbola with eccentricity \cfrac{3}{2} and foci at (\pm 2, 0) is
  • \cfrac{x^2}{4}-\cfrac{y^2}{5}=\cfrac{4}{9}
  • \cfrac{x^2}{9}-\cfrac{y^2}{4}=\cfrac{4}{9}
  • \cfrac{x^2}{4}-\cfrac{y^2}{9}=1
  • none of these
The centre of the circle given by \mathbf { r } \cdot ( \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } ) = 15 \text { and } | \mathbf { r } - ( \mathbf { j } + 2 \mathbf { k } ) | = 4 ,
  • ( 0,1,2 )
  • ( 1,3,4 )
  • ( - 1,3,4 )
  • None of these
The equation of the circle passing through (2,0) and (0,4) and having the minimum radius is 
  • { x }^{ 2 }+{ y }^{ 2 }=20
  • { x }^{ 2 }+{ y }^{ 2 }-2x-4y=0
  • { (x }^{ 2 }+{ y }^{ 2 }-4)+\lambda ({ x }^{ 2 }+{ y }^{ 2 }-16)=0
  • N.O.T.
Which is not represented by quadratic equation ?
  • Circle
  • Straight line
  • Parabola
  • Hyperbola
Find the area of x^2+y^2=49
  • 154
  • 49
  • 88
  • None
The equation { x }^{ 2 }+{ y }^{ 2 }=9 meets x-axis at 
  • (\pm 3,0)
  • (\pm 9,0)
  • (\pm 1,0)
  • (-5/14, 5/14)
If the  the hyperbola \frac { { x }^{ 2 } }{ 4 } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1 passses though (4,3)
  • { b }^{ 2 }=3
  • { b }^{ 2 }=9
  • { b }^{ 2 }=4
  • { b }^{ 2 }=100
The equation \dfrac {x^{2}}{2-r}+\dfrac {y^{2}}{r-5}+1=0 represents an ellipse, if
  • r > 2
  • 2 < r < 5
  • r > 5
  • r \in (2,5)
Find the value of a if y^2=4ax pases through (8,8)
  • 2
  • 4
  • 8
  • None
Find the Center of circle x^2+y^2-4x-8x+25=0
  • (2,4)
  • (-2,-4)
  • (4,2)
  • (-4,-2)
The equation of the circle passing through (2,0) and (0,4) and having the minimum radius is ______________.
  • { x }^{ 2 }+{ y }^{ 2 }=4
  • { x }^{ 2 }+{ y }^{ 2 }-2x+4y=0
  • { x }^{ 2 }+{ y }^{ 2 }-x-2y=0
  • { x }^{ 2 }+{ y }^{ 2 }-2x-4y=0
Radius of the circle 2x^2+2y^2+8x+4y-3=0 is
  • \sqrt{17}
  • \sqrt{23}
  • \sqrt{\dfrac{13}{2}}
  • \sqrt{\dfrac{11}{2}}
A rod {A}{B} of length 4 units moves horizontally with its left end \mathrm{A} always on the circle x^{2}+y^{2}-4x-18y-29=0 then the locus of the other end \mathrm{B} is
  • x^{2}+y^{2}-12x-8y+3=0
  • x^{2}+y^{2}-12x-18y+3=0
  • x^{2}+y^{2}+4x-18y-29=0
  • x^{2}+y^{2}-4x-16y+19=0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers