Processing math: 4%

CBSE Questions for Class 11 Engineering Maths Conic Sections Quiz 2 - MCQExams.com

The equation of the image of the circle x2+y26x4y+12=0 by the line mirror x+y1=0 is
  • x2+y2+2x+4y+4=0
  • x2+y22x+4y+4=0
  • x2+y2+2x+4y4=0
  • x2+y2+2x4y+4=0
The locus of a point which moves such that the sum of the squares of its distances from three vertices of a triangle ABC is constant is a circle
whose centre is at the
  • centroid of triangle ABC
  • Circumcentre of triangle ABC
  • Orthocentre of triangle ABC
  • incentre of triangle ABC
The lines 2x-3y =5 and 3x-4y =7 diameters of a circle having area as 154 units. Then the equation of the circle is:
  • x2+y22x+2y=62
  • x2+y2+2x+2y=62
  • x2+y2+2x2y=47
  • x2+y22x+2y=47
lf the line 3{x}-2{y}+6=0 meets {x}-axis, y-axis respectively at {A} and {B}, then the equation of the circle with radius {A}{B} and Centre at {A} is
  • x^{2}+y^{2}+4x+9=0
  • x^{2}+y^{2}+4x-9=0
  • x^{2}+y^{2}+4x+4=0
  • x^{2}+y^{2}+4x-4=0
lf the lines 2x+3y+1=0 and 3x-y-4=0 lie along diameters of a circle of circumference 10\pi, then the equation of the circle is:
  • x^{2}+y^{2}-2x+2y-23=0
  • x^{2}+y^{2}-2x-2y-23=0
  • x^{2}+y^{2}+2x+2y-23=0
  • x^{2}+y^{2}+2x-2y-23=0
lf the lines 2x-3y=5 and 3x-4y=7 are two diameters of a circle of radius 7 then the equation of the circle is
  • x^{2}+y^{2}+2x-4y-47=0
  • x^{2}+y^{2}=49
  • x^{2}+y^{2}-2x+2y-47=0
  • x^{2}+y^{2}=17
A line is at a constant distance c from the origin and meets the coordinates axes in A and B. The locus of the centre of the circle passing through O, A, B is
  • x^{-2} + y^{-2} = c^{-2}
  • x^{-2} + y^{-2} = 2c^{-2}
  • x^{-2} + y^{-2} = 3c^{-2}
  • x^{-2} + y^{-2} = 4c^{-2}
The area of a circle centered at (1,2) and passing through (4,6) is
  • 5\pi sq. units
  • 15\pi sq. units
  • 25\pi sq. units
  • 30\pi sq. units
The equation of the circle passing through the point (-1,2) and having two diameters along the pair of lines \mathrm{x}^{2}-\mathrm{y}^{2}-4\mathrm{x}+2\mathrm{y}+3=0 is
  • \mathrm{x}^{2}+\mathrm{y}^{2}-4\mathrm{x}-2\mathrm{y}+5=0
  • \mathrm{x}^{2}+\mathrm{y}^{2}+4\mathrm{x}+2\mathrm{y}-5=0
  • \mathrm{x}^{2}+\mathrm{y}^{2}-4\mathrm{x}-2\mathrm{y}-5=0
  • \mathrm{x}^{2}+\mathrm{y}^{2}+4\mathrm{x}+2\mathrm{y}+5=0
The eccentricity of the conic represented by \sqrt{(x+2)^{2}+y^{2}}+\sqrt{(x-2)^{2}+y^{2}}=8 is 
  • \displaystyle \frac{1}{3}
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{1}{5}
The total number of real tangents that can be drawn to the ellipse 3x^{2}+5y^{2}=32 and 25x^{2}+9y^{2}=450 passing through (3,5) is
  • 0
  • 2
  • 3
  • 4
The centre, vertex, focus of a conic are (0,0), (0,5), (0,6). Its length of latus rectum is
  • \dfrac{11}5
  • \dfrac75
  • \dfrac{14}5
  • \dfrac{22}5
The length of the latus rectum of the hyperbola x^{2}-4y^{2}=4 is
  • 2
  • 1
  • 4
  • 3
A straight line is drawn through the centre of the circle {x}^{2}+{y}^{2}=2ax parallel to {x}+2y=0 and intersecting the circle at {A} and {B}. Then, the area of \Delta A{O}{B} is
  • \displaystyle \dfrac{\mathrm{a}^{2}}{\sqrt{5}}
  • \displaystyle \dfrac{\mathrm{a}^{3}}{\sqrt{5}}
  • \displaystyle \dfrac{\mathrm{a}^{2}}{\sqrt{34}}
  • \displaystyle \dfrac{\mathrm{a}^{2}}{\sqrt{3}}
The length of latus rectum of the hyperbola 4x^{2}-9y^{2}-16x-54y-101=0 is
  • \dfrac85
  • \dfrac87
  • \dfrac89
  • \dfrac83
The equation  \sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=5 represents
  • a circle
  • ellipse
  • line segment
  • an empty set
The equation of directrix and latus rectum of a parabola are 3x-4y+27=0 and 3x-4y+2=0. Then the length of latus rectum is
  • 5
  • 10
  • 15
  • 20
A circle of radius 5 units passes through the points (7,1),(9,5). If the ordinate of the centre is less than 2, then the equation of the circle is
  • \mathrm{x}^{2}+\mathrm{y}^{2}+8\mathrm{x}-10\mathrm{y}+16=0
  • \mathrm{x}^{2}+\mathrm{y}^{2}+8\mathrm{x}+10\mathrm{y}+16=0
  • \mathrm{x}^{2}+\mathrm{y}^{2}-24\mathrm{x}-2\mathrm{y}+120=0
  • \mathrm{x}^{2}+\mathrm{y}^{2}+24\mathrm{x}-2\mathrm{y}-120=0
The equation (\mathrm{x}^{2}-\mathrm{a}^{2})^{2}+(\mathrm{y}^{2}-\mathrm{b}^{2})^{2}=0 represent points which are
  • collinear
  • on a circle centre (a,b)
  • on a circle centre (0,0)
  • coincident
Assertion(A): The difference of the focal distances of any point on the hyperbola \displaystyle \frac{x^{2}}{36}-\frac{y^{2}}{9}=1 is 12.
Reason(R): The difference of the focal distances of any point on the hyperbola is equal to the length of it transverse axis
  • Both A and R are true and R is the correct

    explanation of A.
  • Both A and R are true but R is not the correct

    explanation of A.
  • A is true but R is false.
  • A is false but R is true.
A parabola with axis parallel to x axis passes through (0, 0), (2, 1), (4, -1). Its length of latus rectum is
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{7}{3}
  • \displaystyle \frac{1}{3}
Length of the latusrectum of the hyperbola xy=c ,is equal to
  • 2c
  • \sqrt{2}c
  • 2\sqrt{2}c
  • 4c
The difference between the length 2a of the transverse axis of a hyperbola of eccentricity e and the length of its latus rectum is :
  • 2a\left| 3-{ e }^{ 2 } \right|
  • 2a\left| 2-{ e }^{ 2 } \right|
  • 2a\left( { e }^{ 2 }-1 \right)
  • a\left( 2{ e }^{ 2 }-1 \right)
The length of the latus rectum of the parabola, whose focus is \left(\displaystyle \frac{u^{2}}{2g}\sin 2\alpha,\frac{-u^{2}}{2g}\cos 2\alpha \right) and directrix is y=\dfrac{u^{2}}{2g}, is
  • \displaystyle \frac{u^{2}}{g}\cos^{2}\alpha
  • \displaystyle \frac{u^{2}}{g}\cos 2\alpha
  • \displaystyle \frac{2u^{2}}{g}\cos 2\alpha
  • \displaystyle \frac{2u^{2}}{g}\cos^{2}\alpha
A parabola has x- axis as its axis, y- axis as its directrix and 4a as its latus rectum. If the focus lies to the left side of the directrix then the equation of the parabola is
  • y^{2}=4a(x+a)
  • y^{2}=4a(x-a)
  • y^{2}=-4a(x+a)
  • y^{2}=4a(x-2a)
If L_{1}L_{2} is the latusrectum of y^{2}=12x,  P is any point on the directrix then the area of \Delta PL_{1}L_{2} =
  • 32
  • 18
  • 36
  • 16
The length of latus rectum of the parabola (x-2a)^{2}+y^{2}=x^{2} is
  • 2a
  • 3a
  • 6a
  • 4a
The length of latus rectum of the parabola y^{2}+8x-2y+17=0 is
  • 2
  • 4
  • 8
  • 16
The length of latus rectum of the hyperbola xy-3x-3y+7=0 is
  • 4
  • 3
  • 2
  • 1
The equation of the circle having centre (1,\ -2) and passing through the point of intersection of the lines 3x+y=14 and 2x+5y=18 is
  • x^2+y^2-2x+4y-20=0
  • x^2+y^2-2x-4y-20=0
  • x^2+y^2+2x-4y-20=0
  • x^2+y^2+2x+4y-20=0
The centre of a circle is (2a, a-7). Find the values of a if the circle passes through the point (11, -9) and has diameter 10\sqrt{2} units.
  • \dfrac 35
  • 3
  • 5
  • \dfrac 53
The equation of parabola whose latus rectum is 2 units, axis is x+y-2=0 and tangent at the vertex is x-y+4=0 is given by
  • (x+y-2)^{2} = 4\sqrt{2}(x-y+4)^{2}
  • (x-y-4)^{2} = 4\sqrt{2}(x+y-2)
  • (x+y-2)^{2} = 2\sqrt{2}(x-y+4)
  • (x-y-4)^{2} =2\sqrt{2}(x-y+2)^{2}
(4-\mathrm{a})\mathrm{x}^{2}+(12-\mathrm{a})\mathrm{y}^{2}=\mathrm{a}^{2}-16\mathrm{a}+48 represents an ellipse. Then:
  • a<12
  • a<4
  • a>4 & a<12
  • a>0
Latus rectum of a parabola is a ........ line segment with respect to the axis of the parabola through the focus whose endpoints lie on the parabola.
  • perpendicular
  • parallel
  • tilted
  • None of these
Which of the following is/are not false?
  • The mid point of the line segment joining the foci is called the centre of the ellipse.
  • The line segment through the foci of the ellipse is called the major axis.
  • The end points of the major axis are called the vertices of the ellipse.
  • Ellipse is symmetric with respect to Y-axis only.
The arrangement of the following parabolas in the ascending order of their length of latusrectum 
A)   y=4x^{2}+x+1     B) 2y=x^{2}+x+5
C)   x=2y^{2}+y+3     D) y^{2}+x+y+9=0
  • B,D,C,A
  • A,B,C,D
  • A,C,D,B.
  • A,D,C,B
If {a}\neq 0 and the line  2{b}{x}+3 cy+4{d}=0 passes through the points of intersection of the parabolas {y}^{2}=4ax and {x}^{2}=4ay, then
  • {d}^{2}+(2{b}+3{c})^{2}=0
  • {d}^{2}+(3{b}+2{c})^{2}=0
  • {d}^{2}+(2{b}-3{c})^{2}=0
  • {d}^{2}+(3{b}-2{c})^{2}=0
If the equation of the incircle of an equilateral triangle is { x }^{ 2 }+{ y }^{ 2 }+4x-6y+4=0, then the equation of the circumcircle of the triangle is
  • { x }^{ 2 }+{ y }^{ 2 }+4x+6y-23=0
  • { x }^{ 2 }+{ y }^{ 2 }+4x-6y-23=0
  • { x }^{ 2 }+{ y }^{ 2 }-4x-6y-23=0
  • None of these
The length of the latus rectum of the parabola 
169\left \{ (x-1)^{2}+(y-3)^{2} \right \}=(5x-12y+17)^{2} is
  • \dfrac{14}{11}
  • \dfrac{12}{13}
  • \dfrac{28}{13}
  • none of these
The equation of a locus is y^{2}+2ax+2by+c=0. Then
  • it is an ellipse
  • it is a parabola
  • latus rectum =a
  • latus rectum =2a
\dfrac {x^2}{r^2-r-6}+\dfrac {y^2}{r^2-6r+5}=1 will represents the ellipse, if r lies in the interval:
  • (-\infty, -2)
  • (3, \infty)
  • (5, \infty)
  • (1, \infty)
The equation x^{2}+y^{2}-2x+4y+5=0 represents 
  • a point
  • a pair of straight lines
  • a circle of non zero radius
  • none of these
If major axis is the x-axis and passes through the points (4, 3) and (6, 2), then the equation for the ellipse whose centre is the origin is satisfies the given condition.
  • \displaystyle \frac{x^2}{52} + \frac{y^2}{13} =1
  • \displaystyle \frac{x^2}{13} + \frac{y^2}{52} =1
  • \displaystyle \frac{x^2}{52} - \frac{y^2}{13} =1
  • \displaystyle \frac{x^2}{13} - \frac{y^2}{52} =0
The equation 7y^2-9x^2+54x-28y-116=0 represents
  • a hyperbola
  • a parabola
  • an ellipse
  • a pair of straight lines
If the parabola y^{2}=4ax passes through (3,\:2) then the length of latus rectum is
  • \displaystyle \frac{1}{3}
  • \displaystyle \frac{2}{3}
  • 1
  • \displaystyle \frac{4}{3}
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x^{2}-y^{2}-2x+4y-3=0 is
  • x^{2}+y^{2}-2x-4y+4=0
  • x^{2}+y^{2}+2x+4y-4=0
  • x^{2}+y^{2}-2x+4y+4=0
  • none\ of\ these
The length of the latus rectum of the parabola whose focus is \left ( 3,3 \right ) and directrix is  3x-4y-2=0 is
  • 1
  • 2
  • 4
  • 8
The triangle PQR is inscribed in the circle \displaystyle x^{2}+y^{2}= 25. If Q and R have coordinates \displaystyle \left ( 3, 4 \right ) and \displaystyle \left ( -4, 3 \right ), respectively, then \displaystyle \angle QPR is equal to
  • \displaystyle \frac{\pi }{2}
  • \displaystyle \frac{\pi }{3}
  • \displaystyle \frac{\pi }{4}
  • \displaystyle \frac{\pi }{6}
The lines \displaystyle 2x - 3y = 5 and \displaystyle 3x - 4y = 7 intersect at the center of the circle whose area is 154 sq. units, then equation of circle is
  • \displaystyle x^2 + y^2 - 2x + 2y = 47
  • \displaystyle x^2 + y^2 + 2x - 2y = 31
  • \displaystyle x^2 + y^2 - 2x - 2y = 47
  • \displaystyle x^2 + y^2 - 2x - 2y = 31
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (-1, 2) then the equation of its circumcircle is
  • x^{2}+y^{2}-2x-2y-3=0
  • x^{2}+y^{2}+2x-2y-3=0
  • x^{2}+y^{2}+2x+2y-3=0
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers