Processing math: 2%

CBSE Questions for Class 11 Engineering Maths Conic Sections Quiz 4 - MCQExams.com

If the straight line y=mx+c is parallel to the axis of the parabola y2=lx and intersects the parabola at (c28,c) then the length of the latus rectum is 
  • 2
  • 3
  • 4
  • 8
The area of the circle represented by the equation {(x+3)}^{2}+{(y+1)}^{2}=25 is
  • 4\pi
  • 5\pi
  • 16\pi
  • 25\pi
The radius of the circle passing through the point (6, 2) and two of whose diameters are \displaystyle x+y=6 and \displaystyle x+2y=4 is:
  • 4
  • 6
  • 20
  • \displaystyle \sqrt { 20 }
Write the equation of the circle with center at (0,0) and a radius of 6
  • (x-6)^2+y^2=36
  • x^2+(y-6)^2=0
  • x^2+y^2=36
  • x^2+y^2=-36
The graph of the equation x^2+2y^2 = 8 is
  • a circle
  • an ellipse
  • a hyperbola
  • a parabola
The graph of the equation 4y^2 + x^2= 25 is
  • a circle
  • an ellipse
  • a hyperbola
  • a parabola
  • a straight line
Which of the following is an equation of the circle with its center at (0,0) that passes through (3,4) in the standard (x,y) coordinate plane?
  • x+y=1
  • x-y=25
  • {x}^{2}+y=25
  • {x}^{2}+{y}^{2}=5
  • {x}^{2}+{y}^{2}=25
What is the approximate radius of the circle whose equation is (x-\sqrt{3})^2+(y+2)^2=11?
  • 1.71
  • 2.33
  • 3.32
  • 3.85
  • 4.27
A circle with center (3, 8) contains the point (2, -1). Another point on the circle is:
  • (1, -10)
  • (4, 17)
  • (5, -9)
  • (7, 15)
  • (9, 6)
Identify the polynomial represented by the graph?
517085_9b27c0ab8bb7412bbe5f47959ac059e7.png
  • y = x^{2} + 2
  • y = -x^{2}
  • y = x^{2}
  • y = x^{2} - 2
Which of the following is an equation of a circle in the xy-plane with center \left(0, 4\right) and a radius with endpoint \left(\dfrac{4}{3}, 5\right)?
  • { x }^{ 2 }+{ \left( y-4 \right) }^{ 2 }=\dfrac { 25 }{ 9 }
  • { x }^{ 2 }+{ \left( y+4 \right) }^{ 2 }=\dfrac { 25 }{ 9 }
  • { x }^{ 2 }+{ \left( y-4 \right) }^{ 2 }=\dfrac { 5 }{ 3 }
  • { x }^{ 2 }+{ \left( y+4 \right) }^{ 2 }=\dfrac { 3 }{ 5 }
The least value of 2x^{2} + y^{2} + 2xy + 2x - 3y + 8 for real numbers x and y is
  • 2
  • 8
  • 3
  • 1
  • -\dfrac12
Locus of the point (\sqrt{3h} , \sqrt{3k + 2} ) if it lies on the line x-  y-  1 = 0 is a
  • Straight line
  • Circle
  • Parabola
  • None of these
The length of the latus rectum of the parabola whose vertex is (2, -3) and the directrix x = 4 is
  • 2
  • 4
  • 6
  • 8
The graph of the equation x^2+\dfrac{y^2}{4}=1 is
  • an ellipse
  • a circle
  • a hyperbola
  • a parabola
  • two straight lines
Equation of circle with center (-a, -b) and radius \sqrt{a^2-b^2} is.
  • x^2+y^2-2ax-2by - 2b^2=0
  • x^2+y^2-2ax-2by + 2a^2=0
  • x^2+y^2+2ax + 2by + 2b^2=0
  • x^2+y^2-2ax-2by + 2b^2=0
Which ordered number pair represents the center of the circle x^2 + y^2 - 6x + 4y - 12 = 0?
  • (9,4)
  • (3,2)
  • (3,-2)
  • (6,4)
The asymptotes of a hyperbola 4x^2 - 9y^2=36 are
  • 2x \pm 3y = 1
  • 2x \pm 3y = 0
  • 3x \pm 2y = 1
  • None
The equation of hyperbola whose coordinates of the foci are (\pm8,0) and the lenght of latus rectum is 24 units, is
  • 3{ x }^{ 2 }-{ y }^{ 2 }=48
  • 4{ x }^{ 2 }-{ y }^{ 2 }=48
  • { x }^{ 2 }-3{ y }^{ 2 }=48
  • { x }^{ 2 }-4{ y }^{ 2 }=48
The lines 2x - 3y - 5 = 0 and 3x -4y = 7 are diameters of a circle of area 154 sq units, then the equation of the circle is.( Use \pi = \dfrac{22}{7})
  • x^2+y^2+2x-2y-62=0
  • x^2+y^2+2x-2y-47=0
  • x^2+y^2-2x+2y-47=0
  • x^2+y^2-2x-2y-62=0
The length of latus rectum of the ellipse 4{ x }^{ 2 }+9{ y }^{ 2 }=36 is
  • \dfrac{4}{3}
  • \dfrac{8}{3}
  • 6
  • 12
Consider the parametric equation
x = \dfrac {a(1 - t^{2})}{1 + t^{2}}, y = \dfrac {2at}{1 + t^{2}}.
What does the equation represent?
  • It represents a circle of diameter a
  • It represents a circle of radius a
  • It represents a parabola
  • None of the above
What is the radius of the circle passing through the point (2, 4) and having centre at the intersection of the lines x - y = 4 and 2x + 3y + 7 = 0?
  • 3 units
  • 5 units
  • 3 \sqrt 3 units
  • 5 \sqrt 2 units
The differential equation (3x + 4y + 1)dx + (4x + 5y + 1) dy = 0 represents a family of
  • Circles
  • Parabolas
  • Ellipses
  • Hyperbolas
The line (x-2)\cos \theta +(y-2)\sin \theta =1 touches a circle for all value of \theta, then the equation of circle is
  • x^2+y^2-4x-4y+7=0
  • x^2+y^2+4x+4y+7=0
  • x^2+y^2-4x-4y-7=0
  • None\ of\ the\ above
The equation of the smallest circle passing through the points (2, 2) and (3, 3) is
  • x^{2} + y^{2} + 5x + 5y + 12 = 0
  • x^{2} + y^{2} - 5x - 5y + 12 = 0
  • x^{2} + y^{2} + 5x - 5y + 12 = 0
  • x^{2} + y^{2} - 5x + 5y + 12 = 0
Let ABCD be a square of side length 1. and \Gamma a circle passing through B and C, and touching AD. The radius of \Gamma is
  • \cfrac { 3 }{ 8 }
  • \cfrac { 1 }{ 2 }
  • \cfrac { 1 }{ \sqrt { 2 } }
  • \cfrac { 5 }{ 8 }
If focii of \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1 coincide with the focii of \dfrac{x^2}{25}+\dfrac{y^2}{9}=1 and eccentricity of the hyperbola is 2, then
  • a^2+b^2=14
  • There is a director circle of the hyperbola
  • Centre of the director circle is (0,0)
  • Length of latus rectum of the hyperbola is 12
If e_{1} and e_{2} are the eccentricities of two conics with e_{1}^{2} + e_{2}^{2} = 3, then the conics are.
  • Ellipses
  • Parabolas
  • Circles
  • Hyperbolas
The line segment joining the foci of the hyperbola x^{2} - y^{2} + 1 = 0 is one of the diameters of a circle. The equation of the circle is :
  • x^{2} + y^{2} = 4
  • x^{2} + y^{2} = \sqrt {2}
  • x^{2} + y^{2} = 2
  • x^{2} + y^{2} = 2\sqrt {2}
The ends of the latus rectum of the parabola x^{2} + 10x - 16y + 25 = 0 are
  • (3, 4), (-13, 4)
  • (5, -8), (-5, 8)
  • (3, -4), (13, 4)
  • (-3, 4), (13, -4)
The eccentricity of an ellipse 9{ x }^{ 2 }+16{ y }^{ 2 }=144 is
  • \dfrac { \sqrt { 3 } }{ 5 }
  • \dfrac { \sqrt { 5 } }{ 3 }
  • \dfrac { \sqrt { 7 } }{ 4 }
  • \dfrac { 2 }{ 5 }
The directrix of a parabola is x+8=0 and its focus is at (4,3). Then, the length of the latusrectum of the parabola is
  • 5
  • 9
  • 10
  • 12
  • 24
The foci of the ellipse 4{x}^{2}+9{y}^{2}=1 are
  • \left( \pm \cfrac { \sqrt { 3 } }{ 2 } ,0 \right)
  • \left( \pm \cfrac { \sqrt { 5 } }{ 2 } ,0 \right)
  • \left( \pm \cfrac { \sqrt { 5 } }{ 3 } ,0 \right)
  • \left( \pm \cfrac { \sqrt { 5 } }{ 6 } ,0 \right)
  • \left( \pm \cfrac { \sqrt { 5 } }{ 4 } ,0 \right)
If the eccentricity of the hyperbola { x }^{ 2 }-{ y }^{ 2 }\sec ^{ 2 }{ \alpha  } =5 is \sqrt { 3 } times the eccentricity of the ellipse { x }^{ 2 }\sec ^{ 2 }{ \alpha  } +{ y }^{ 2 }=25, then the value of \alpha is
  • { \pi }/{ 6 }
  • { \pi }/{ 4 }
  • { \pi }/{ 3 }
  • { \pi }/{ 2 }
For the parabola { y }^{ 2 }+8x-12y+20=0
  • Vertex is (2,6)
  • Focus is (0.6)
  • Latusrectum 4
  • Axis y=6
The foci of the conic section
25{ x }^{ 2 }+16{ y }^{ 2 }-150x=175 are
  • \left( 0,\pm 3 \right)
  • \left( 0,\pm 2 \right)
  • \left( 3,\pm 3 \right)
  • \left( 0,\pm 1 \right)
The equation of directrix of the parabola y^{2} + 4y + 4x + 2 = 0 is
  • x = -1
  • x = 1
  • x = -\dfrac {3}{2}
  • x = \dfrac {3}{2}
The radius of the circle passing through the points (2,3),(2,7) and (5,3) is
  • 5
  • 4
  • \cfrac { 5 }{ 2 }
  • 2
  • \sqrt { 5 }
The one end of the latusrectum of the parabola { y }^{ 2 }-4x-2y-3=0 is at
  • \left( 0,-1 \right)
  • \left( 0,1 \right)
  • \left( 0,-3 \right)
  • \left( 3,0 \right)
  • \left( 0,2 \right)
The lines y=x+\sqrt { 2 } and y=x-2\sqrt { 2 } are the tangent of certain circle. If the point \left( 0,\sqrt { 2 }  \right) lies on this circle, then its equation is
  • { \left( x-\cfrac { 3 }{ 2\sqrt { 2 } } \right) }^{ 2 }+{ \left( y+\cfrac { 1 }{ 2\sqrt { 2 } } \right) }^{ 2 }=\cfrac { 9 }{ 4 }
  • { \left( x+\cfrac { 3 }{ 2\sqrt { 2 } } \right) }^{ 2 }+{ \left( y+\cfrac { 1 }{ 2\sqrt { 2 } } \right) }^{ 2 }=\cfrac { 9 }{ 4 }
  • { \left( x-\cfrac { 3 }{ 2\sqrt { 2 } } \right) }^{ 2 }+{ \left( y-\cfrac { 1 }{ 2\sqrt { 2 } } \right) }^{ 2 }=\cfrac { 9 }{ 4 }
  • None of the above
On the parabola y={ x }^{ 2 }, the point least distant from the straight line y=2x-4 is
  • \left( 1,1 \right)
  • \left( 1,0 \right)
  • \left( 1,-1 \right)
  • \left( 0,0 \right)
If the eccentricity of the ellipse a{ x }^{ 2 }+4{ y }^{ 2 }=4a,(a<4) is \cfrac { 1 }{ \sqrt { 2 }  } , then its semi-minor axis is equal to
  • 2
  • \sqrt { 2 }
  • 1
  • \sqrt { 3 }
  • 3
The lines 2x-3y=5 and 3x-4y=7 are the diameters of a circle of area 154 sq.units. The equation of the circle is
  • { x }^{ 2 }+{ y }^{ 2 }+2x-2y=62
  • { x }^{ 2 }+{ y }^{ 2 }-2x+2y=47\quad
  • { x }^{ 2 }+{ y }^{ 2 }+2x-2y=47
  • { x }^{ 2 }+{ y }^{ 2 }-2x+2y=62\quad
The equation of the circle which touches the lines x = 0, y = 0 and 4x + 3y = 12 is
  • x^{2} + y^{2} - 2x - 2y - 1 = 0
  • x^{2} + y^{2} - 2x - 2y + 3 = 0
  • x^{2} + y^{2} - 2x - 2y + 2 = 0
  • x^{2} + y^{2} - 2x - 2y + 1 = 0
  • x^{2} + y^{2} - 2x - 2y - 3 = 0
The eccentricity of the ellipse 12x^2 + 7y^2 = 84 is equal to :
  • \dfrac {\sqrt5}{7}
  • \sqrt{\dfrac {5}{7}}
  • \dfrac {\sqrt5}{12}
  • \dfrac {5}{7}
  • \dfrac {7}{12}
Equations x = a\cos \theta and y= b\sin \theta represent a conic section whose eccentricity e is given by
  • e^{2} = \dfrac {a^{2} + b^{2}}{a^{2}}
  • e^{2} = \dfrac {a^{2} + b^{2}}{b^{2}}
  • e^{2} = \dfrac {a^{2} - b^{2}}{a^{2}}
  • None of these
An ellipse has OB as semi-minor axis, F and { F }^{ ' } its foci and the \angle FB{ F }^{ ' } is a right angle. Then, the eccentricity of the ellipse is
  • \dfrac { 1 }{ \sqrt { 3 } }
  • \dfrac { 1 }{ 4 }
  • \dfrac { 1 }{ 2 }
  • \dfrac { 1 }{ \sqrt { 2 } }
The hyperbola \cfrac { { x }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1 passes through the point \left( \sqrt { 6 } ,3 \right) and the length of the latusrectum is \cfrac { 18 }{ 5 } . Then, the length of the transverse axis is equal to
  • 5
  • 4
  • 3
  • 2
  • 1
The equation of the circumcircle of the triangle formed by the lines y + \sqrt{3} x = 6, y - \sqrt{3} x = 6 and y=0 is 
  • x^2+y^2+4x=0
  • x^2+y^2-4y=0
  • x^2+y^2-4y=12
  • x^2+y^2+4x=12
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers