Explanation
25{ x }^{ 2 }+16{ y }^{ 2 }-150x=175\\ { (5x) }^{ 2 }-150x+{ (15) }^{ 2 }+16{ y }^{ 2 }=175+{ (15) }^{ 2 }\\ { (5x-15) }^{ 2 }+16{ y }^{ 2 }=400\\ 25{ (x-3) }^{ 2 }+16{ y }^{ 2 }=400\\ \dfrac { { (x-3) }^{ 2 } }{ 16 } +\dfrac { { y }^{ 2 } }{ 25 } =1
Major axis of the ellipse is y axis
So a=5,b=4
{ e }^{ 2 }=1-\dfrac { { b }^{ 2 } }{ { a }^{ 2 } } =1-\dfrac { 16 }{ 25 } =\dfrac { 9 }{ 25 } \\ \Rightarrow e=\dfrac { 3 }{ 5 }
Coordinates of foci of standard ellipse with major axis as y are (0,\pm ae)
\Rightarrow foci of given ellipse is
\left( 3,\pm 5\times \dfrac { 3 }{ 5 } \right) \\ \left( 3,\pm 3 \right) '
So opttion C is correct
Please disable the adBlock and continue. Thank you.