Explanation
Given:
The equation of line is x - 2y = 3
Substitute x = 0 in the given equation.
0 - 2y = 3 \Rightarrow - 2y = 3 \Rightarrow y = - \dfrac{3}{2}
Substitute y = 0 in the given equation.
x - 2\left (0 \right ) = 3 \Rightarrow x = 3
The points are \left (3, 0 \right ) \, and \, \left (0, - \dfrac{3}{2} \right ) .
Let the centre be \left (a, -a \right ) .
Substitute \left (a, -a \right ) in given equation.
a + 2a = 3 \Rightarrow 3a = 3 \Rightarrow a = 1
Centre = \left (1, -1 \right )
Radius = 1
The equation of a circle becomes \left (x - 1 \right )^{2} + \left (y + 1 \right )^{2} = 1 .
Hence, the required solution is found.
In the xy plane, the segment with end points(3,8) and ( -5,2) is the diameter of the circle. The point (k,10) lies on the circle for:
C\left( x,y \right)=\left( \dfrac{3+5}{2},\dfrac{8+2}{2} \right)=\left( 4,5 \right)
The length of the diameter of the circle is,
D=\sqrt{{{\left( 5-3 \right)}^{2}}+{{\left( 2-8 \right)}^{2}}}=2\sqrt{10}\ units
Therefore,
Radius =\sqrt{10}\ units
Therefore, the equation of the required circle is,
{{\left( x-4 \right)}^{2}}+{{\left( y-5 \right)}^{2}}=10
Since, the point \left( k,10 \right) lies on the circle, we have
{{\left( k-4 \right)}^{2}}+{{\left( 10-5 \right)}^{2}}=10
{{k}^{2}}-8k+16+25=10
{{k}^{2}}-8k+31=0
2x^{2} + 3y - 8x - 18y + 35 = \lambda
2\left (x^{2} - 4x \right ) + 3 \left ( y^{2} - 6y + 35 \right ) = \lambda
2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = \lambda
For \lambda = 0 , then
2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = 0
Thus, the point is \left ( 2,3 \right ) .
Hence, the correct option is ‘d’.
Please disable the adBlock and continue. Thank you.