Explanation
Given that,
Equations of diameter 3x-4y-7=0 …… (1) and 2x-3y-5=0…… (2)
Solve equations are
3x-4y-7=0 ×2
2x-3y-5=0 ×3
6x-8y-14=0
\underline{6x-9y-15=0}\,\,\,\,\,\,\,\,on\,\,subtracting\,\,\,that
y+1=0
y=-1
Put the value of in equation (1)
3x-4y-7=0
3x-4\left( -1 \right)-7=0
3x+4-7=0
3x-3=0
x=1
Hence , the coordinates of the centre is (1,-1)
Also given area of circle= 49\pi
\pi {{r}^{2}}=49\pi
{{r}^{2}}=49
r=7
Then, we know that the equation of circle is
{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}
{{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}={{7}^{2}}
{{x}^{2}}+1-2x+{{y}^{2}}+1+2y=49
{{x}^{2}}+{{y}^{2}}-2x+2y+2=49
{{x}^{2}}+{{y}^{2}}-2x+2y=49-2
{{x}^{2}}+{{y}^{2}}-2x+2y=47
{{x}^{2}}+{{y}^{2}}-2x+2y-47=0
Hence, it is complete solution.
Option (C) is correct answer.
We know that equation of ellipse is
\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 …….(1)
Given that
e=\sqrt{\dfrac{2}{5}}
\sqrt{\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}}}=\sqrt{\dfrac{2}{5}}
5{{a}^{2}}-5{{b}^{2}}=2{{a}^{2}}
{{a}^{2}}=\dfrac{5{{b}^{2}}}{3} …….(2)
\because ellipse pass through (-3,1)
Then x=-3, y=1
Put in equation (1) we get
\dfrac{{{\left( -3 \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{1}^{2}}}{{{b}^{2}}}=1
{{a}^{2}}+9{{b}^{2}}={{a}^{2}}{{b}^{2}}
\dfrac{5{{b}^{2}}}{3}+9{{b}^{2}}=\dfrac{5{{b}^{2}}}{3}.{{b}^{2}}
{{b}^{2}}=\dfrac{32}{5} (From equation (1) and (2) )
Put in equation (2) , we get {{a}^{2}}=\dfrac{32}{3}
the value of a and b put in equation (1), we get
\dfrac{{{x}^{2}}}{\dfrac{32}{3}}+\dfrac{{{y}^{2}}}{\dfrac{32}{5}}=1
3{{x}^{2}}+5{{y}^{2}}=32
This is required equation
\textbf{Hence, Option 'B' is correct}
Please disable the adBlock and continue. Thank you.