Processing math: 10%

CBSE Questions for Class 11 Engineering Maths Conic Sections Quiz 7 - MCQExams.com

Equation of the circle of radius 5 whose centre lies on y-axis in first quadrant and passes through(3,2) is 
  • x2+y212y+11=0
  • x2+y26y1=0
  • x2+y28y+3=0
  • None of these
A circle is concentric with circle x2+y22x+4y20=0. If perimeter of the semicircle is 36 then the equation of the circle is :
  • x2+y22x4y44=0
  • (x1)2+(y+2)2=(126/11)2
  • x2+y22x+4y43=0
  • none of these
The axes are translated so that the new equation of the circle x2+y25x+2y5=0 has no first degree terms. Then the new equation is
  • x2+y2=9
  • x2+y2=494
  • x2+y2=8116
  • none of these
vertices of an ellipse are (0,±10) and its eccentricity e=4/5 then its equation is 
  • 90x240y2=3600
  • 80x2+50y2=4000
  • 36x2+100y2=3600
  • 100x2+36y2=3600
The name of the conic represent by the equation x^2+y^2-2y+20x+10=0 is
  • a hyperbola
  • an ellipse
  • a parabola
  • circle
The equation of the circle passing through the foci of the ellipes  {\frac{x}{{16}}^2} + {\frac{y}{{{9^{}}}}^2} = 1 and having centre at \left( {0,3} \right) is 

  • {x^2} + {y^2} - 6y - 7 = 0
  • {x^2} + {y^2} - 6y +7 = 0
  • {x^2} + {y^2} - 6y - 5 = 0
  • {x^2} + {y^2} - 6y + 5 = 0
The equation of ellipse whose major axis is along the direction of x-axis, eccentricity is e=2/3
  • 36x^2+20y^2=405
  • 20x^2+36y^2=405
  • 30x^2+22y^2=411
  • 22x^2+32y^2=409
The equation \dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1 represents an ellipse if
  • a < 4
  • a > 4
  • 4 < a < 10
  • None of these
Eccentricity of the hyperbola x^{2}-y^{2}=4 is 
  • 2
  • 1
  • \dfrac {3}{2}
  • \sqrt {2}
If the latus rectum of an ellipse x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi = 1 is 1 / 2 then \varphi is
  • \pi / 2
  • \pi / 6
  • \pi / 3
  • 5 \pi/ 12
If a circle with centre (0,0) touches the line 5x+12y=1 then it equation will be
  • 169(x^{2}+y^{2})=1
  • (x^{2}+y^{2})=169
  • 16(x^{2}+y^{2})=1
  • (x^{2}+y^{2})=13
Consider the set of hydperbola xy=k,k\ \in\ R. Let e_{1} be the eccentricity when k=4 and e_{2} be the eccentricity when k=9 . Then e^{2}_{1}+e^{2}_{2}=
  • 2
  • 3
  • 4
  • 1
A circle has its centre on the y-axis and passes through the origin, touches another circle with centre (2,2) and radius 2, then the radius of the circle is 
  • 1
  • 1/2
  • 1/3
  • 1/4
L L ^ { '} is the latus rectum of an ellipse and \triangle S ^ { \prime } L L ^ { ' } is an equilateral triangle. Then e =
  • \dfrac { 1 } { \sqrt { 2 } }
  • \dfrac { 1 } { \sqrt { 3 } }
  • \dfrac { 1 } { \sqrt { 5 } }
  • \dfrac { 1 } { \sqrt { 7 } }
Length of the latus rectum of the parabola \sqrt {x}+\sqrt {y}=\sqrt {a} is
  • a\sqrt {2}
  • \dfrac {a}{\sqrt {2}}
  • a
  • 2a
If there is exactly one tangent at a distance of 4 units from one of the focus of \dfrac {x^{2}}{a^{2}}+\dfrac {y^{2}}{a^{2}-16}=1,a > 4, the length of latus rectum is :-
  • 16
  • \dfrac {8}{3}
  • 12
  • 15
The equation \dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0 represents an ellipse, if
  • r>2
  • r\in \left(2,\:\dfrac{7}{2}\right)\cup \left(\dfrac{7}{2},5\right)
  • r>5
  • r<2
A variable circle is drawn to touch the x-axis at the origin.The locus of the pole at the straight line 6 x + m y + n = 0 w.r.t. the variable circle has the equation:-
  • x ( m y - n ) - e y ^ { 2 } = 0
  • x ( m y + n ) - e y ^ { 2 } = 0
  • x ( m y - n ) + \ell y ^ { 2 } = 0
  • none
General solution of the equation y=x\dfrac{dy}{dx}+\dfrac {dx}{dy} represents _____________.
  • a straight line or hyperbola
  • a straight line or parabola
  • a parabola or hyperbola
  • circles
Equation of circles which touch both the axes and whose centres are at a distance of 2\sqrt {2} units from origin are 
  • x^{2}+y^{2}\pm 4x\pm 4y+4=0
  • x^{2}+y^{2}\pm 2x\pm 2y+4=0
  • x^{2}+y^{2}\pm x\pm y+4=0
  • x^{2}+y^{2}-4=0
The equation of the circle in the first quadrature touching each coordinate axis at a distance of one unit from the origin 
  • x^{2}+y^{2}-2x-2y+1=0
  • x^{2}+y^{2}-2x-1=0
  • x^{2}+y^{2}-2x=0
  • None of these
The equation of the circle which circumscribes the triangle formed by the lines x + y + 3 = 0, x - y + 1 =0 and x = 3 is 
  • x^2+y^2-6x+2y-15=0
  • 3x^2+3y^2-9=0
  • x^2+y^2+6x-2y+15=0
  • None of these
The parametric form of the equation of the circle { x }^{ 2 }+{ y }^{ 2 }=9 is:
  • x=\sqrt { 3 } \cos { \theta } , y=\sqrt { 3 } \sin { \theta }
  • x=3\cos { \theta } ,\quad y=3\sin { \theta }
  • x=-\sqrt { 3 } \cos { \theta } , y=-\sqrt { 3 } \sin { \theta }
  • none of these
The length of the latus rectum of the parabola { 2y }^{ 2 }+3y+4x-2=0 is ________.
  • \dfrac{ 3 }{ 2 }
  • \dfrac{ 1 }{ 3 }
  • 2
  • None of these.
The equation of a circle with centre at (1, -2) and passing through the centre of the given circle x^2+y^2+2y-3=0, is?
  • x^2+y^2-2x+4y+3=0
  • x^2+y^2-2x+4y-3=0
  • x^2+y^2+2x-4y-3=0
  • x^2+y^2+2x-4y+3=0
The equation of circle whose centre is (1, -3) and which touches the line 2x-y-4=0, is
  • 5x^2+5y^2+10x+30y+49=0
  • 5x^2+5y^2+10x-30y-49=0
  • 5x^2+5y^2-10x+30y-49=0
  • None of these
For the ellipse {12x}^{2} +{4y}^{2} +24x-16y+25=0
  • centre is (-1,2)
  • Length of axes are {\sqrt {3}} and 1
  • eceentricity is \sqrt {\cfrac {2} {3}}
  • All of these
If a conic passing through origin has ( 3,3 ) , ( - 4,4 ) as its focii, then

  • auxillary circle is ( 2 x + 1 ) ^ { 2 } + ( 2 y - 7 ) ^ { 2 } = 2
  • auxillary circle is ( 2 x + 1 ) ^ { 2 } + ( 2 y - 7 ) ^ { 2 } = 98
  • auxillary circle is ( 2 x + 1 ) ^ { 2 } + ( 2 y - 1 ) ^ { 2 } = 49
  • auxillary circle is ( 2 x + 1 ) ^ { 2 } + ( 2 y - 1 ) ^ { 2 } = 41
Equation of the ellipse whose minor axis is equal to the distance between foci and whose latus rectum is 10 , is given by ____________.
  • 2 x ^ { 2 } + 3 y ^ { 2 } = 100
  • 2 x ^ { 2 } + 3 y ^ { 2 } = 80
  • x ^ { 2 } + 2 y ^ { 2 } = 100
  • none of these
The latus rectum of a parabola whose focal chord is PSQ such that SP=3 and SQ=2, is given by 
  • \dfrac{24}{5}
  • \dfrac{12}{5}
  • \dfrac{6}{5}
  • \dfrac{48}{5}
The angle between the curves x^3-3xy^2=2 and 3x^2y-y^3=2 is?
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{2}
The ratio of the ordinates of a point and its corresponding point is \frac { 2 \sqrt { 2 } } { 3 } then eccentricity is ____________________.

  • \frac { 1 } { 3 }
  • \frac { 2 } { 3 }
  • \frac { \sqrt { 2 } } { 3 }
  • \frac { 2\sqrt { 2 } } { 3 }
The length of the latus rectum of the parabola 4y^{2}+2x-20y+17=0 is:
  • 3
  • 6
  • \dfrac{1}{2}
  • 9
The locus of the moving point P(x,y) satisfying \sqrt { { \left( { x-1 } \right)  }^{ 2 }+{ y }^{ 2 } } +\sqrt { { \left( { x+1 } \right)  }^{ 2 }+({ y-{ \sqrt { 12 } ) }^{ 2 } } } = a will be an ellipse if 
  • a<4
  • a>2
  • a>4
  • a<2
A circle has radius 3 units and its centre lies on the line y=x-1. Then the equation of this circle if it passes through the point (7, 3), is?
  • x^2+y^2-8x-6y=16
  • x^2+y^2+8x+6y+16=0
  • x^2+y^2-8x-6y-16=0
  • None of these
ABCD is a square with side a. If AB and AD are taken as positive coordinate axes then equation of circle circumscribing the square is
  • x^{2}+y^{2}-ax-ay=0
  • x^{2}+y^{2}+ax+ay=0
  • x^{2}+y^{2}-ax+ay=0
  • x^{2}+y^{2}+ax-ay=0
The latus rectum of the conic { 3x }^{ 2 }+{ 4y }^{ 2 }-6x+8y-5=0 is ________________________.
  • 3
  • \dfrac { \sqrt { 3 } }{ 2 }
  • \dfrac { 2 }{ \sqrt { 3 } }
  • \dfrac { 4 }{ \sqrt { 3 } }
The circle passing through \left(t,1\right),\left(1,t\right) and \left(t,t\right) for all values of t also passes through 
  • \left(0,0\right)
  • \left(1,1\right)
  • \left(1,-1\right)
  • \left(-1,-1\right)
The area bounded by the parabola { y }^{ 2 }=4xy\quad and its rectum is :-
  • \frac { { 4 }^{ a } }{ 3 } sq-units
  • \frac { { 8a }^{ 2 } }{ 3 } sq-units
  • \frac { { 4a }\sqrt { a } }{ 3 } sq-units
  • \frac { { 8a }\sqrt { a } }{ 3 } sq-units
Identify the types of cuves with represent by the equation \frac { { x }^{ 2 } }{ 1-r } -\frac { { y }^{ 2 } }{ 1+t } =1 , where r>1
is _______________.
  • An ellipse
  • A hyperbola
  • A circle
  • None of these
The equation of the circle which passes through the point (3,-2) and (-2,0) and centre line 2x-y=3,is 
  • { x }^{ 2 }+{ y }^{ 2 }-3x-12y+2=0
  • { x }^{ 2 }+{ y }^{ 2 }-3x+12y+2=0
  • { x }^{ 2 }+{ y }^{ 2 }+3x+12y+2=0
  • None of these
The eq. of the circle which touches the exes of y at a distance of 4 from the origin and cuts the intercepts of 6 units from the axis of x is
  • x^2 +y^2 \pm 10x \pm 8y + 16=0
  • x^2 +y^2 \pm 5x \pm 4y + 16=0
  • x^2 +y^2 \pm 10x \pm 8y - 16=0
  • x^2 +y^2 \pm 5x \pm 4y - 16=0
Let P,\ Q,\ R,\ S be the feet of perpendicular drawn from the point (1,\ 1) the lines y=3x+4 and y=-3x+6 and their angle bisectors respectively, the equation of the circle whose extremities of a diameter are R and S is 
  • 3x^{2}+3y^{2}+104x-110=0
  • x^{2}+y^{2}+104x-110=0
  • 3x^{2}+3y^{2}-4x-18y+16=0
  • x^{2}+y^{2}-4x-18+16=0
The length of the latus rectum of the parabola whose focus is (3,0) and directrix is 3x-4y-2=0 is
  • 12
  • 1
  • 4
  • none of these
A parabola passing through the point (-4,-2) has its vertex at the origin and y-axis as its axis. The latus rectum of the parabola is
  • 6
  • 8
  • 10
  • 12
The equation of the latusrectum of the parabola { x }^{ 2 }+4x+2y=0 is:-
  • 3y-2=0
  • 3Y+2=0
  • 2Y-3=0
  • 2Y+3=0
The circle (x-3a)^{2}+y^{2}=8ax intersects the parabola y^{2}=4ax at the ends of the rectum of the parabola. 
  • True
  • False
The equation of the circle having as a diameter, the chord x - y - 1 = 0 of the circle 2x^2 + 2y^2 - 2x - 6y - 25 = 0, is
  • x^2 + y^2 - 3x - y - \dfrac{29}{2} = 0
  • 2x^2 + 2y^2 + 2x - 5y - \dfrac{29}{2} = 0
  • 2x^2 + 2y^2 - 6x - 2y - 21 = 0
  • None of these
Equation of the circle which is such that the length of the tangents to it from the points (1,0), (0, 2) and (3, 2) are 1,\sqrt { 7 } respectively is
  • 6({ x }^{ 2 }+{ y }^{ 2 })-28x-5y+28=0
  • 9({ x }^{ 2 }+{ y }^{ 2 })-28x-5y+28=0
  • 3({ x }^{ 2 }+{ y }^{ 2 })-28x-5y+28=0
  • { x }^{ 2 }+{ y }^{ 2 }-28x-5y+28=0
The curve represented by Rs \left(\dfrac{1}{z}\right)=C is (where C is a constant and \neq 0)
  • Ellipse
  • Parabola
  • Circle
  • Straight line
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers