Processing math: 10%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Conic Sections Quiz 7 - MCQExams.com
CBSE
Class 11 Engineering Maths
Conic Sections
Quiz 7
Equation of the circle of radius 5 whose centre lies on y-axis in first quadrant and passes through
(
3
,
2
)
is
Report Question
0%
x
2
+
y
2
−
12
y
+
11
=
0
0%
x
2
+
y
2
−
6
y
−
1
=
0
0%
x
2
+
y
2
−
8
y
+
3
=
0
0%
None of these
Explanation
Let the coordinate of the center be
(
0
,
k
)
as center lies on y-axis
hence, the Equation of circle should be
(
x
−
0
)
2
+
(
y
−
k
)
2
=
5
2
⇒
x
2
+
y
2
+
k
2
−
2
k
y
=
25
and it passes through the point (3,2)
3
2
+
2
2
+
k
2
−
2
k
⋅
2
=
25
⇒
k
2
−
4
k
−
12
=
0
⇒
k
=
−
2
,
6
But
k
=
6
as the center is in the first quadrant
Putting this value in
x
2
+
y
2
+
k
2
−
2
k
y
=
25
, we get
x
2
+
y
2
+
36
−
12
y
=
25
⇒
x
2
+
y
2
−
12
y
+
11
=
0
A circle is concentric with circle
x
2
+
y
2
−
2
x
+
4
y
−
20
=
0
. If perimeter of the semicircle is
36
then the equation of the circle is :
Report Question
0%
x
2
+
y
2
−
2
x
−
4
y
−
44
=
0
0%
(
x
−
1
)
2
+
(
y
+
2
)
2
=
(
126
/
11
)
2
0%
x
2
+
y
2
−
2
x
+
4
y
−
43
=
0
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
x
2
+
y
2
−
2
x
+
4
y
−
20
=
0
center
(
1
,
−
2
)
perimeter
⇒
36
=
(
π
r
+
2
r
)
36
=
r
(
3.14
+
2
)
=
(
(
x
−
1
)
+
y
+
2
)
2
=
(
126
11
)
2
or
(
7
)
2
r
=
36
5.14
=
7
The axes are translated so that the new equation of the circle
x
2
+
y
2
−
5
x
+
2
y
−
5
=
0
has no first degree terms. Then the new equation is
Report Question
0%
x
2
+
y
2
=
9
0%
x
2
+
y
2
=
49
4
0%
x
2
+
y
2
=
81
16
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
x
2
+
y
2
−
5
x
+
2
y
−
5
=
0
√
25
4
+
1
+
25
=
√
49
4
(
5
/
2
,
−
1
)
x
2
+
y
2
=
(
√
49
4
)
2
x
2
+
y
2
=
49
4
vertices of an ellipse are
(
0
,
±
10
)
and its eccentricity
e
=
4
/
5
then its equation is
Report Question
0%
90
x
2
−
40
y
2
=
3600
0%
80
x
2
+
50
y
2
=
4000
0%
36
x
2
+
100
y
2
=
3600
0%
100
x
2
+
36
y
2
=
3600
Explanation
Let the equation of the required ellipse be
x
2
a
2
+
y
2
b
2
=
1
⟶
(
1
)
since the vertices of the ellipse are on
y
-axis, so the coordinate of the vertices are
(
0
,
±
b
)
∴
substituting the value of
{ a }^{ 2 }
and
{ b }^{ 2 }
in equation
(1)
we get,
\dfrac { { x }^{ 2 } }{ 36 } +\dfrac { { y }^{ 2 } }{ 100 } =1\\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }=3600\\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }-3600=0
The name of the conic represent by the equation
x^2+y^2-2y+20x+10=0
is
Report Question
0%
a hyperbola
0%
an ellipse
0%
a parabola
0%
circle
Explanation
For a standard second degree equation
ax^2+2hxy+by^2+2gx+2fy+c=0
to be a circle
a=b\\h=0
Here
a=b=1\\h=0
So The given equation is Circle
The equation of the circle passing through the foci of the ellipes
{\frac{x}{{16}}^2} + {\frac{y}{{{9^{}}}}^2} = 1
and having centre at
\left( {0,3} \right)
is
Report Question
0%
{x^2} + {y^2} - 6y - 7 = 0
0%
{x^2} + {y^2} - 6y +7 = 0
0%
{x^2} + {y^2} - 6y - 5 = 0
0%
{x^2} + {y^2} - 6y + 5 = 0
Explanation
R.E.F image
Equation of ellipse :
\frac{x^{2}}{16}+\frac{y^{2}}{9} = 1
coordinate of foci are
(ac,o); (-ac,o)
e = \sqrt{1-\frac{9}{16}} = \frac{\sqrt{7}}{4}
a = 4
co-ordinate of foci
= (\sqrt{7},0),(-\sqrt{7},0)
R = \sqrt{7+9} = 4
(x-0)^{2}+(y-3)^{2} = 4^{2}
x^{2}+y^{2}-6y+9 = 16
x^{2}+y^{2}-6y-7 = 0
The equation of ellipse whose major axis is along the direction of x-axis, eccentricity is
e=2/3
Report Question
0%
36x^2+20y^2=405
0%
20x^2+36y^2=405
0%
30x^2+22y^2=411
0%
22x^2+32y^2=409
Explanation
\begin{array}{l} e=\frac { 2 }{ 3 } =\sqrt { \frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ c } } \\ \Rightarrow { \left( { \frac { 2 }{ 3 } } \right) ^{ 2 } }=\frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ { { a^{ 2 } } } } \\ \Rightarrow \frac { { 4{ a^{ 2 } } } }{ a } ={ a^{ 2 } }-{ b^{ 2 } } \\ \Rightarrow { b^{ 2 } }={ a^{ 2 } }-4{ a^{ 2 } }=\frac { { 5{ a^{ 2 } } } }{ 9 } \to \left( i \right) \end{array}
Equation of Ellipse are
\begin{array}{l} \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { { y^{ 2 } } } }{ { { b^{ 2 } } } } =1 \\ \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { 9{ y^{ 2 } } } }{ { 5{ a^{ 2 } } } } =1\to \left( { ii } \right) \\ Put\, \, { a^{ 2 } }=\frac { { 405 } }{ { 20 } } \, \, \left( { From\, \, option\, \, in\, \, equation\left( i \right) } \right) \\ Then,\, \, { b^{ 2 } }=\frac { { 405 } }{ { 360 } } \end{array}
Hence, equation of ellipse is
\Rightarrow \frac{{{x^2}}}{{\left( {\frac{{405}}{{20}}} \right)}} + \frac{{{y^2}}}{{\left( {\frac{{405}}{{36}}} \right)}} = - 1,20{x^2} + 36{y^2} = 405
The equation
\dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1
represents an ellipse if
Report Question
0%
a < 4
0%
a > 4
0%
4 < a < 10
0%
None of these
Explanation
\dfrac{x^2}{10-a}+\dfrac{y^2}{4-a}=1
For this equation to represent an ellipse its eccentricity shoule lie between
0
and
1
.
\sqrt{1-\dfrac{b^2}{a^2}}< 1
0< 1-\dfrac{(4-a)^2}{(10-a)^2} <1
0 < (10-a)^2-(4-a)^2 <1
0< 84-12a <1
0< (7-a)12<1
12(7-a)> 0
and
12(7-a)<1
a< 7
and
7-a<\dfrac{1}{12}
a< 7
and
a >\dfrac{83}{12}
Eccentricity of the hyperbola
x^{2}-y^{2}=4
is
Report Question
0%
2
0%
1
0%
\dfrac {3}{2}
0%
\sqrt {2}
If the latus rectum of an ellipse
x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =
1
is
1 / 2
then
\varphi
is
Report Question
0%
\pi / 2
0%
\pi / 6
0%
\pi / 3
0%
5
\pi/ 12
Explanation
Given
x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1
\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1
a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}
and
\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}
\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}
\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi
length of latus rectum
(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)
\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2}
(Given)
\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}
\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}
\rightarrow sin^2 \phi = \dfrac{1}{2}
\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}
\therefore \phi = \dfrac{\pi}{12}
or
\phi = \dfrac{ 5 \pi}{12}
If a circle with centre
(0,0)
touches the line
5x+12y=1
then it equation will be
Report Question
0%
169(x^{2}+y^{2})=1
0%
(x^{2}+y^{2})=169
0%
16(x^{2}+y^{2})=1
0%
(x^{2}+y^{2})=13
Consider the set of hydperbola
xy=k,k\ \in\ R
. Let
e_{1}
be the eccentricity when
k=4
and
e_{2}
be the eccentricity when
k=9
. Then
e^{2}_{1}+e^{2}_{2}=
Report Question
0%
2
0%
3
0%
4
0%
1
A circle has its centre on the
y-axis
and passes through the origin, touches another circle with centre
(2,2)
and radius
2
, then the radius of the circle is
Report Question
0%
1
0%
1/2
0%
1/3
0%
1/4
L L ^ { '}
is the latus rectum of an ellipse and
\triangle S ^ { \prime } L L ^ { ' }
is an equilateral triangle. Then
e =
Report Question
0%
\dfrac { 1 } { \sqrt { 2 } }
0%
\dfrac { 1 } { \sqrt { 3 } }
0%
\dfrac { 1 } { \sqrt { 5 } }
0%
\dfrac { 1 } { \sqrt { 7 } }
Length of the latus rectum of the parabola
\sqrt {x}+\sqrt {y}=\sqrt {a}
is
Report Question
0%
a\sqrt {2}
0%
\dfrac {a}{\sqrt {2}}
0%
a
0%
2a
Explanation
Given that,
\sqrt {x} + \sqrt {y} = \sqrt {a}
\dfrac {\sqrt {x}}{\sqrt {a}} + \dfrac {\sqrt {y}}{\sqrt {a}} = 1
\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{a}} = 1 ..... (1)
But we know that
\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1
is a parabola with focus
F = \dfrac {ab}{c^{3}}
where
c
Directrix
ax + by = 0
Since the semi lotus rectum of a parabola is the
distance from focus to directrix, we have
Latus rectum
= \dfrac {2. a\left (\dfrac {ab^{2}}{c^{2}}\right ) + b\left (\dfrac {a^{2}b}{c^{2}}\right )}{\sqrt {a^{2} + b^{2}}}
= \dfrac {4a^{2}b^{2}}{c^{3}}
From equation (1) to
a = b
so,
Latus rectum
= \dfrac {4a^{2} (a^{2})}{(\sqrt {a^{2} + a^{2}})^{3}}
= \dfrac {4a^{4}}{(\sqrt {2a^{2}})^{3}}
= \dfrac {4a^{4}}{(\sqrt {2}a)^{3}}
= \sqrt {2}a
Latus rectum
= \sqrt {2}a
Hence, this is the answer.
If there is exactly one tangent at a distance of
4
units from one of the focus of
\dfrac {x^{2}}{a^{2}}+\dfrac {y^{2}}{a^{2}-16}=1,a > 4
, the length of latus rectum is :-
Report Question
0%
16
0%
\dfrac {8}{3}
0%
12
0%
15
The equation
\dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0
represents an ellipse, if
Report Question
0%
r>2
0%
r\in \left(2,\:\dfrac{7}{2}\right)\cup \left(\dfrac{7}{2},5\right)
0%
r>5
0%
r<2
Explanation
Equating the equation of the ellipse with the second-degree equation
A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0
with
\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0
we get
A=\dfrac{1}{2-r}, B=0, C=\dfrac{1}{r-5},D=0,E=0
and
F=1
For the second degree equation to represent an ellipse, the coefficients must satisfy the discriminant condition
{B}^{2}-4AC<0
and also
A\neq C
\Rightarrow {\left(0\right)}^{2}-4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0
\Rightarrow -4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0
\Rightarrow \left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)>0
\Rightarrow \left(2-r\right)\left(r-5\right)<0
\Rightarrow \left(r-2\right)\left(r-5\right)>0
\Rightarrow r>2
A variable circle is drawn to touch the x-axis at the origin.The locus of the pole at the straight line
6 x + m y + n = 0
w.r.t. the variable circle has the equation:-
Report Question
0%
x ( m y - n ) - e y ^ { 2 } = 0
0%
x ( m y + n ) - e y ^ { 2 } = 0
0%
x ( m y - n ) + \ell y ^ { 2 } = 0
0%
none
General solution of the equation
y=x\dfrac{dy}{dx}+\dfrac {dx}{dy}
represents _____________.
Report Question
0%
a straight line or hyperbola
0%
a straight line or parabola
0%
a parabola or hyperbola
0%
circles
Equation of circles which touch both the axes and whose centres are at a distance of
2\sqrt {2}
units from origin are
Report Question
0%
x^{2}+y^{2}\pm 4x\pm 4y+4=0
0%
x^{2}+y^{2}\pm 2x\pm 2y+4=0
0%
x^{2}+y^{2}\pm x\pm y+4=0
0%
x^{2}+y^{2}-4=0
Explanation
Since
h=k
(radius )
\sqrt{h^{2}+k^{2}}=2\sqrt{2}
h^{2}+k^{2}=8
2h^{2}=8
(Taking
circle
1^{st}
Quad)
h=2
\therefore k=2
in
\therefore
center
=(2,2)
Eqn. of circle having centre
(h,k)
& radius
=r
(x-h)^{2}+(y-k)^{2}=r^{2}
\therefore (x-2)^{2}+ (y-2)^{2}=4
The equation of the circle in the first quadrature touching each coordinate axis at a distance of one unit from the origin
Report Question
0%
x^{2}+y^{2}-2x-2y+1=0
0%
x^{2}+y^{2}-2x-1=0
0%
x^{2}+y^{2}-2x=0
0%
None of these
Explanation
We can clearly see from diagram that co-ordinates of centre of circle
=(1,1)
& radius is unit
Thus equation of circle:-
(x-1)^{2}+(y-1)^{2}=1^{2}
x^{2}+y^{2}-2x-2y+1=0
The equation of the circle which circumscribes the triangle formed by the lines x + y + 3 = 0, x - y + 1 =0 and x = 3 is
Report Question
0%
x^2+y^2-6x+2y-15=0
0%
3x^2+3y^2-9=0
0%
x^2+y^2+6x-2y+15=0
0%
None of these
The parametric form of the equation of the circle
{ x }^{ 2 }+{ y }^{ 2 }=9
is:
Report Question
0%
x=\sqrt { 3 } \cos { \theta } ,
y=\sqrt { 3 } \sin { \theta }
0%
x=3\cos { \theta } ,\quad y=3\sin { \theta }
0%
x=-\sqrt { 3 } \cos { \theta } ,
y=-\sqrt { 3 } \sin { \theta }
0%
none of these
The length of the latus rectum of the parabola
{ 2y }^{ 2 }+3y+4x-2=0
is ________.
Report Question
0%
\dfrac{ 3 }{ 2 }
0%
\dfrac{ 1 }{ 3 }
0%
2
0%
None of these.
The equation of a circle with centre at
(1, -2)
and passing through the centre of the given circle
x^2+y^2+2y-3=0
, is?
Report Question
0%
x^2+y^2-2x+4y+3=0
0%
x^2+y^2-2x+4y-3=0
0%
x^2+y^2+2x-4y-3=0
0%
x^2+y^2+2x-4y+3=0
The equation of circle whose centre is
(1, -3)
and which touches the line
2x-y-4=0
, is
Report Question
0%
5x^2+5y^2+10x+30y+49=0
0%
5x^2+5y^2+10x-30y-49=0
0%
5x^2+5y^2-10x+30y-49=0
0%
None of these
For the ellipse
{12x}^{2} +{4y}^{2} +24x-16y+25=0
Report Question
0%
centre is
(-1,2)
0%
Length of axes are
{\sqrt {3}} and 1
0%
eceentricity is
\sqrt {\cfrac {2} {3}}
0%
All of these
Explanation
Given,
12x^2+4y^2+24x-16y+25=0
\Rightarrow 12(x+1)^2+4(y-2)^2=3
\dfrac{(x+1)^2}{\frac{1}{4}}+\dfrac{(y-2)^2}{\frac{3}{4}}=1
\therefore a=\dfrac{1}{2},b=\dfrac{\sqrt 3}{2}
⇒ Centre
= (-1, 2)
Here
b^2>a^2
⇒ eccentricity
(e) = \sqrt {\dfrac {b^2-a^2}{b^2}}
= \sqrt {\dfrac {\dfrac 3 4 - \dfrac 1 4}{\dfrac 3 4}}=\sqrt{\dfrac 2 3}
Length of arcs,
length of major arc
=2b=2\left ( \dfrac{\sqrt 3}{2} \right )=\sqrt 3
length of minor arc
=2a=2\left ( \dfrac{1}{2} \right )=1
Option D is correct.
If a conic passing through origin has
( 3,3 ) , ( - 4,4 )
as its focii, then
Report Question
0%
auxillary circle is
( 2 x + 1 ) ^ { 2 } + ( 2 y - 7 ) ^ { 2 } = 2
0%
auxillary circle is
( 2 x + 1 ) ^ { 2 } + ( 2 y - 7 ) ^ { 2 } = 98
0%
auxillary circle is
( 2 x + 1 ) ^ { 2 } + ( 2 y - 1 ) ^ { 2 } = 49
0%
auxillary circle is
( 2 x + 1 ) ^ { 2 } + ( 2 y - 1 ) ^ { 2 } = 41
Equation of the ellipse whose minor axis is equal to the distance between foci and whose latus rectum is
10 ,
is given by ____________.
Report Question
0%
2 x ^ { 2 } + 3 y ^ { 2 } = 100
0%
2 x ^ { 2 } + 3 y ^ { 2 } = 80
0%
x ^ { 2 } + 2 y ^ { 2 } = 100
0%
none of these
The latus rectum of a parabola whose focal chord is
PSQ
such that
SP=3
and
SQ=2
, is given by
Report Question
0%
\dfrac{24}{5}
0%
\dfrac{12}{5}
0%
\dfrac{6}{5}
0%
\dfrac{48}{5}
Explanation
Given,
SP=3
SQ=2
By property of parabola
The harmonic mean of the lengths two parts into which the focus divides the focal chord is equal to length of semi-latus rectum.
Let length of lotus rectum be L
\dfrac{2SP\times SQ}{SP+SQ}=\dfrac{1}{2}
L=\dfrac{4\times SP\times SQ}{SP+SQ}=\dfrac{4\times 3\times 2}{3+2}=\dfrac{24}{5}
.
The angle between the curves
x^3-3xy^2=2
and
3x^2y-y^3=2
is?
Report Question
0%
\dfrac{\pi}{6}
0%
\dfrac{\pi}{4}
0%
\dfrac{\pi}{3}
0%
\dfrac{\pi}{2}
The ratio of the ordinates of a point and its corresponding point is
\frac { 2 \sqrt { 2 } } { 3 }
then eccentricity is ____________________.
Report Question
0%
\frac { 1 } { 3 }
0%
\frac { 2 } { 3 }
0%
\frac { \sqrt { 2 } } { 3 }
0%
\frac { 2\sqrt { 2 } } { 3 }
The length of the latus rectum of the parabola
4y^{2}+2x-20y+17=0
is:
Report Question
0%
3
0%
6
0%
\dfrac{1}{2}
0%
9
The locus of the moving point
P(x,y)
satisfying
\sqrt { { \left( { x-1 } \right) }^{ 2 }+{ y }^{ 2 } } +\sqrt { { \left( { x+1 } \right) }^{ 2 }+({ y-{ \sqrt { 12 } ) }^{ 2 } } } =
a will be an ellipse if
Report Question
0%
a<4
0%
a>2
0%
a>4
0%
a<2
A circle has radius
3
units and its centre lies on the line
y=x-1
. Then the equation of this circle if it passes through the point
(7, 3)
, is?
Report Question
0%
x^2+y^2-8x-6y=16
0%
x^2+y^2+8x+6y+16=0
0%
x^2+y^2-8x-6y-16=0
0%
None of these
ABCD
is a square with side
a
. If
AB
and
AD
are taken as positive coordinate axes then equation of circle circumscribing the square is
Report Question
0%
x^{2}+y^{2}-ax-ay=0
0%
x^{2}+y^{2}+ax+ay=0
0%
x^{2}+y^{2}-ax+ay=0
0%
x^{2}+y^{2}+ax-ay=0
Explanation
Let the radius of circle be a/2, since it is
half of the diameter which is a. The centre of
the circle is going to occur at (a/2, a/2), since that
is also the centre of square
Using
(x-h)^{2}+(y-k)^{2} = r^{2}
where r is the radius and (h,k) is centre
(x-a/2)^{2}+(y-a/2)^{2} = (a/2)^{2}
x^{2}-\frac{2ax}{2}+\frac{a^{2}}{4}+y^{2}-\frac{2ay}{2}+\frac{a^{2}}{4} = \frac{a^{2}}{2}
x^{2}+y^{2}+\frac{a^{2}}{2}-ax - ay = \frac{a^{2}}{2}
x^{2}+y^{2} = ax+ay.
x^{2}+y^{2} = a(x+y) \Rightarrow x^{2}+y^{2}-ax-ay = 0.
The latus rectum of the conic
{ 3x }^{ 2 }+{ 4y }^{ 2 }-6x+8y-5=0
is ________________________.
Report Question
0%
3
0%
\dfrac { \sqrt { 3 } }{ 2 }
0%
\dfrac { 2 }{ \sqrt { 3 } }
0%
\dfrac { 4 }{ \sqrt { 3 } }
The circle passing through
\left(t,1\right),\left(1,t\right)
and
\left(t,t\right)
for all values of
t
also passes through
Report Question
0%
\left(0,0\right)
0%
\left(1,1\right)
0%
\left(1,-1\right)
0%
\left(-1,-1\right)
Explanation
The general equation of circle is
(x-h)^{2}+(y-k)^{2} = r^{2},
where h and k are the
coordinates
of center of circle.
if It passes through
(1,t)
so
(1-h)^{2}+(t-k)^{2} = r^{2}
__ (1)
if It passes through
(t,t)
so
(t-h)^{2}+(t-k)^{2} = r^{2}
__ (2)
if It passes through
(t,1)
so
(t-h)^{2}+(1-k)^{2} = r^{2}
__ (3)
on solving eq (1) & (2)
1-h = t-h \Rightarrow t = 1
It t = 1, then the circle passes through (1,1).
The area bounded by the parabola
{ y }^{ 2 }=4xy\quad
and its rectum is :-
Report Question
0%
\frac { { 4 }^{ a } }{ 3 } sq-units
0%
\frac { { 8a }^{ 2 } }{ 3 } sq-units
0%
\frac { { 4a }\sqrt { a } }{ 3 } sq-units
0%
\frac { { 8a }\sqrt { a } }{ 3 } sq-units
Identify the types of cuves with represent by the equation
\frac { { x }^{ 2 } }{ 1-r } -\frac { { y }^{ 2 } }{ 1+t } =1
, where
r>1
is _______________.
Report Question
0%
An ellipse
0%
A hyperbola
0%
A circle
0%
None of these
The equation of the circle which passes through the point (3,-2) and (-2,0) and centre line 2x-y=3,is
Report Question
0%
{ x }^{ 2 }+{ y }^{ 2 }-3x-12y+2=0
0%
{ x }^{ 2 }+{ y }^{ 2 }-3x+12y+2=0
0%
{ x }^{ 2 }+{ y }^{ 2 }+3x+12y+2=0
0%
None of these
Explanation
Let
x^2+y^2+2gx+2fy+c=0
........(1) be the equation
(3,-2)
lies on the circle.
Plugging in
13+6g-4f+c=0
.........(2)
(-2,0)
lies on the circle lies on the circle
4-2g+c=0
........(3)
centre
(-g,-f)
lies on
2x-y-3=0
-2g+f-3=0
..........(4)
This (4) equation including the first and
3
unknowns g,f, and c (Note
x
and
y
are considered constant) conditions for consistency given.
\begin{vmatrix} x^2+y^2& 2x& 2y& 1\\ 13& 6& -4& 1\\ 4& -4x& 0& 1\\ -3& -2& 1& 0\end{vmatrix}=0
After somehow operations and expanding (one can directly expand also)
\boxed{x^2+y^2+3x+12y+2=0}
The eq. of the circle which touches the exes of y at a distance of
4
from the origin and cuts the intercepts of
6
units from the axis of x is
Report Question
0%
x^2 +y^2 \pm 10x \pm 8y + 16=0
0%
x^2 +y^2 \pm 5x \pm 4y + 16=0
0%
x^2 +y^2 \pm 10x \pm 8y - 16=0
0%
x^2 +y^2 \pm 5x \pm 4y - 16=0
Let
P,\ Q,\ R,\ S
be the feet of perpendicular drawn from the point
(1,\ 1)
the lines
y=3x+4
and
y=-3x+6
and their angle bisectors respectively, the equation of the circle whose extremities of a diameter are
R
and
S
is
Report Question
0%
3x^{2}+3y^{2}+104x-110=0
0%
x^{2}+y^{2}+104x-110=0
0%
3x^{2}+3y^{2}-4x-18y+16=0
0%
x^{2}+y^{2}-4x-18+16=0
The length of the latus rectum of the parabola whose focus is (3,0) and directrix is 3x-4y-2=0 is
Report Question
0%
12
0%
1
0%
4
0%
none of these
Explanation
focus
\equiv (a,0)
.
f\equiv (3,0)
\therefore a=3
Length of latus rectum
= 4a
= 4\times 3
= 12
cm
A parabola passing through the point
(-4,-2)
has its vertex at the origin and
y-
axis as its axis. The latus rectum of the parabola is
Report Question
0%
6
0%
8
0%
10
0%
12
The equation of the latusrectum of the parabola
{ x }^{ 2 }+4x+2y=0
is:-
Report Question
0%
3y-2=0
0%
3Y+2=0
0%
2Y-3=0
0%
2Y+3=0
The circle
(x-3a)^{2}+y^{2}=8ax
intersects the parabola
y^{2}=4ax
at the ends of the rectum of the parabola.
Report Question
0%
True
0%
False
The equation of the circle having as a diameter, the chord
x - y - 1 = 0
of the circle
2x^2 + 2y^2 - 2x - 6y - 25 = 0
, is
Report Question
0%
x^2 + y^2 - 3x - y - \dfrac{29}{2} = 0
0%
2x^2 + 2y^2 + 2x - 5y - \dfrac{29}{2} = 0
0%
2x^2 + 2y^2 - 6x - 2y - 21 = 0
0%
None of these
Equation of the circle which is such that the length of the tangents to it from the points (1,0), (0, 2) and (3, 2) are
1,\sqrt { 7 }
respectively is
Report Question
0%
6({ x }^{ 2 }+{ y }^{ 2 })-28x-5y+28=0
0%
9({ x }^{ 2 }+{ y }^{ 2 })-28x-5y+28=0
0%
3({ x }^{ 2 }+{ y }^{ 2 })-28x-5y+28=0
0%
{ x }^{ 2 }+{ y }^{ 2 }-28x-5y+28=0
Explanation
The curve represented by
Rs \left(\dfrac{1}{z}\right)=C
is (where
C
is a constant and
\neq 0
)
Report Question
0%
Ellipse
0%
Parabola
0%
Circle
0%
Straight line
Explanation
\begin{array}{l} { { Re } }\, \, \left( { \frac { 1 }{ z } } \right) =c \\ { { Re } }\, \, \left( { \frac { 1 }{ { x+iy } } } \right) =c \\ { { Re } }\, \, \left( { \frac { { x-iy } }{ { { x^{ 2 } }+{ y^{ 2 } } } } } \right) =c \\ \frac { x }{ { { x^{ 2 } }+{ y^{ 2 } } } } =c \\ c\left( { { x^{ 2 } }+{ y^{ 2 } } } \right) -{ x }=0 . \end{array}
Hence, this is represent circle.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page