Processing math: 2%

CBSE Questions for Class 11 Engineering Maths Conic Sections Quiz 9 - MCQExams.com

Find the equation of a circle whose centre is (2, - 1 ) an radius is 3
  • x2+y2+4x2y+4=0
  • x2+y24x+2y4=0
  • x2+y2+4x+2y4=0
  • x2+y2+2x4y4=0
The equation of a circle which is passing through the vertices of an equilateral triangle whose median is of length 3 a is
  • x ^ { 2 } + y ^ { 2 } = 9 a ^ { 2 }
  • x ^ { 2 } + y ^ { 2 } = 16 a ^ { 2 }
  • x ^ { 2 } + y ^ { 2 } = 4 a ^ { 2 }
  • x ^ { 2 } + y ^ { 2 } = a ^ { 2 }
Equation \sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4 represents _____________.
  • Parabola
  • Ellipse
  • Circle
  • straight lines
If \left| z-{ z }_{ 0 } \right| =\dfrac { \left| a\overline { z } +a\overline { z } +b \right|  }{ 2\left| a \right|  } represent a parabola, Then the  length of latus  rectum of parabola 
  • \left| a\overline { { z }_{ 0 } } \overline { { a }z_{ 0 } } +b \right|
  • \dfrac { \left| a\overline { { z }_{ 0 } } \overline { { a }z_{ 0 } } +b \right| }{ \left| a \right| }
  • \dfrac { \left| a\overline { { z }_{ 0 } } \overline { { a }z_{ 0 } } +b \right| }{ 2\left| a \right| }
  • None of these
If the tangent to the curve, y=x^3+ax-b at the point (1, -5) is perpendicular to the line, -x+y+4=0, then which one of the following points lies on the curve?
  • (-2, 2)
  • (2, -2)
  • (2, -1)
  • (-2, 1)
In what ratio, the point of intersection of the common tangents to hyperbola \dfrac{x^2}{1}-\dfrac{y^2}{8}=1 and parabola y^2=12x, divides the foci of the given hyperbola?
  • 3:4
  • 3:2
  • 5:4
  • 5:3
AB is a chord of the circle x^{2} + y^{2} = 9. The tangent at A and B intersect at C. If (1, 2) is the midpoint of AB, the area of \triangle ABC is (in square units).
  • 9
  • \dfrac {7}{\sqrt {5}}
  • \dfrac {9}{\sqrt {5}}
  • \dfrac {8}{\sqrt {5}}
The equation \dfrac {x^{2}}{2 - \lambda} + \dfrac {y^{2}}{\lambda - 5} - 1 = 0 represents an ellipse, if
  • \lambda < 5
  • \lambda < 2
  • 2 < \lambda < 5
  • \lambda < 2 or \lambda < 5
The eccentricity of the ellipse 5x^{2} + 9y^{2} = 1 is
  • \dfrac 23
  • \dfrac 34
  • \dfrac 45
  • \dfrac 12
The eccentricity of the ellipse 9x^{2} + 25y^{2} - 18x - 100y - 116 = 0, is
  • 25/16
  • 4/5
  • 16/25
  • 5/4
An ellipse has its centre at (1, -1) and semi-major axis = 8 and it passes through the point (1, 3). The equation of the ellipse is
  • \dfrac {(x + 1)^{2}}{64} + \dfrac {(y + 1)^{2}}{16} = 1
  • \dfrac {(x - 1)^{2}}{64} + \dfrac {(y + 1)^{2}}{16} = 1
  • \dfrac {(x - 1)^{2}}{16} + \dfrac {(y + 1)^{2}}{64} = 1
  • \dfrac {(x + 1)^{2}}{64} + \dfrac {(y - 1)^{2}}{16} = 1
The eccentricity of the ellipse 25x^{2} + 16^{2} = 400 is
  • \dfrac 35
  • \dfrac 13
  • \dfrac 25
  • \dfrac 15
Write the eccentricity of the hyperbola whose latus-rectum is half of its transverse axis.
  • \cfrac{1}{\sqrt 3}
  • \cfrac{1}{\sqrt 5}
  • \cfrac{1}{\sqrt 2}
  • None of the above
If the major axis of an ellipse is three times the minor axis, then its eccentricity is equal to
  • \dfrac {1}{3}
  • \dfrac {1}{\sqrt {3}}
  • \dfrac {1}{\sqrt {2}}
  • \dfrac {2\sqrt {2}}{3}
  • \dfrac {2}{3\sqrt {2}}
If the latus-rectum of an ellipse is one half of its minor axis, then its eccentricity is
  • \dfrac {1}{2}
  • \dfrac {1}{\sqrt {2}}
  • \dfrac {\sqrt {3}}{2}
  • \dfrac {\sqrt {3}}{4}
The eccentricity of the conic 9x^{2} + 25y^{2} = 225 is
  • \dfrac 25
  • \dfrac 45
  • \dfrac 13
  • \dfrac 15
  • \dfrac 35
The vertex of the parabola y^2 - 4y - x + 3 = 0 is
  • (-1,3)
  • (-1,2)
  • (2,-1)
  • (3, -1)
The eccentricity of the conic 9{x}^{2}-16{y}^{2}=144 is
  • \cfrac{5}{4}
  • \cfrac{4}{3}
  • \cfrac{4}{5}
  • \sqrt{7}
 The equation 5x^2 + y^2 + y = 8 represents 
  • An ellipse
  • A parabola
  • A hyperbola
  • A Circle
Write the length of the latus-rectum of the hyperbola 16{x}^{2}-9{y}^{2}=144
  • \cfrac{5}{3}
  • \cfrac{4}{3}
  • \cfrac{3}{4}
  • \cfrac{4}{5}
The equation of the circle with centre (2, 2) which passes through (4,5) is 
  • x^2 + y^2 - 4x + 4y - 77 = 0
  • x^2 + y^2 - 4x - 4y - 5 = 0
  • x^2 + y^2 + 2x + 2y - 59 = 0
  • x^2 + y^2 - 2x - 2y - 23 = 0
  • x^2 + y^2 + 4x - 2y -26 = 0
The centre of the ellipse 4x^2 + y^2 - 8x + 4y - 8 = 0 is
  • (0,2)
  • (2,-1)
  • (2,1)
  • (1,2)
The latus-rectum of the hyperbola 16{x}^{4}-9{y}^{2}=144 is
  • 16/3
  • 32/3
  • 8/3
  • 4/3
The eccentricity of the ellipse \dfrac{(x-1)^2}{2} + \left(y + \dfrac{3}{4}\right)^2 = \dfrac{1}{16} is
  • \dfrac{1}{\sqrt{2}}
  • \dfrac{1}{2\sqrt{2}}
  • \dfrac{1}{2}
  • \dfrac{1}{4}
The latus rectum of the parabola \displaystyle x = at^2 + bt + c, y = a't^2 + b't + c' is
  • \displaystyle \dfrac {\left ( aa'- bb' \right )^2}{\left ( a^2 + a'^2 \right )^\dfrac {3}{2}}
  • \displaystyle \dfrac {\left ( ab'- a'b \right )^2}{\left ( a^2 + a'^2 \right )^\dfrac {3}{2}}
  • \displaystyle \dfrac {\left ( bb'- aa' \right )^2}{\left ( b^2 + b'^2 \right )^\dfrac {3}{2}}
  • \displaystyle \dfrac {\left ( a'b- ab' \right )^2}{\left ( b^2 + b'^2 \right )^\dfrac {3}{2}}
The foci of the ellipse 25\left ( x + 1 \right )^2 + 9\left ( y + 2 \right )^2 = 225, are at
  • \left ( -1 , 2 \right ) and \left ( -1 , -6 \right )
  • \left ( -2 , 1 \right ) and \left ( -2 , 6 \right )
  • \left ( -1 , -2 \right ) and \left ( -2 , -1 \right )
  • \left ( -1 , -2 \right ) and \left ( -1 , -6 \right )
The centre of a circle is C(2,-5) and the circle passes through the point A(3,2). The equation of the circle is
  • { x }^{ 2 }+{ y }^{ 2 }-4x+10y-21=0
  • { x }^{ 2 }+{ y }^{ 2 }+4x+6y-21=0
  • { x }^{ 2 }+{ y }^{ 2 }+4x-10y+21=0
  • none of these
If the parabola {y}^{2}=4ax passes through the point P(3,2), then the length of its latus rectum is
  • \cfrac{1}{3}
  • \cfrac{2}{3}
  • \cfrac{4}{3}
  • 4
The equation \displaystyle ax^2 + 4xy + y^2 + ax + 3y + 2 = 0 represents a parabola if a is
  • \displaystyle -4
  • \displaystyle 4
  • \displaystyle 0
  • \displaystyle 8
The latus rectum of the hyperbola 9x^{2} - 16y^{2} - 18x - 32y - 151 = 0 is 
  • \dfrac{9}{4}
  • 9
  • \dfrac{3}{2}
  • \dfrac{9}{2}
If the eccentricity of the ellipse \dfrac{x^{2}}{a^{2}+ 1}+ \dfrac{y^{2}}{a^{2}+ 2}=1 \, is \, \dfrac{1}{\sqrt{6}} , then latus rectrum of ellipse is 
  • \dfrac{5}{\sqrt{6}}
  • \dfrac{10}{\sqrt{6}}
  • \dfrac{8}{\sqrt{6}}
  • none of these
The co- ordinates (2,3) and (1,5)are the foci of an ellipse which passes through the origin , then the equation of 
  • tangent at the origin is (3 \sqrt{2}-5)x+ (1-2 \sqrt{2})y=0
  • tangent at the origin is (3 \sqrt{2}+ 5)x+ (1+2 \sqrt{2}y)=0
  • normal at the origin is (3\sqrt{2}+ 5)x -(2 \sqrt{2}+1 )y=0
  • normal at the origin is x(3 \sqrt{2}-5) -y(1- 2 \sqrt{2})=0
If the equation of the ellipse is 3x^{2}+ 2 y^{2}+6x-8y+5=0, then which of the following is/ are true?
  • e=\dfrac{1}{\sqrt{3}}
  • center is (-1,2)
  • foci are (-1,1) and (-1,3)
  • directrices are y= 2 \pm \sqrt{3}
Consider the parabola whose focus is at (0,0) and tangent at vertex is x-y+1=0

The length of latus rectum is
  • 4 \sqrt{2}
  • 2 \sqrt{2}
  • 8 \sqrt{2}
  • 3 \sqrt{2}
The length of the latus rectum of the parabola whose focus is \left (\frac{u^{2}} {2g} \sin 2\alpha, -\frac{u^{2}} {2g} \cos 2 \alpha  \right ) and directrix is y = \frac{u^{2}} {2g} is 
  • \frac{u^{2}} {2g} \cos^{2} \alpha
  • \frac{u^{2}} {2g} \cos 2 \alpha
  • \frac{2u^{2}} {2g} \cos 2 \alpha
  • \frac{2u^{2}} {2g} \cos^{2} \alpha
The centre of a circle whose end points of a diameter are (-6,3) and (6,4) is
  • (8,-1)
  • (4,7)
  • (0,\frac{7}{2})
  • (4,\frac{7}{2})
The graph of y=x^2 is a straight line.
  • True
  • False
\text{If (0, 0) be the vertex and } 3x- 4y+ 2 = 0 \text{ be the directrix of a parabola,}
\text{ then the length of its latus rectum is - } 
  • \dfrac{4}{5}
  • \dfrac{2}{5}
  • \dfrac{8}{5}
  • \dfrac{1}{5}
The distance between the foci of an ellipse is 16 and eccentricity is \dfrac12. Length of the major axis of the ellipse is
  • 8
  • 64
  • 16
  • 32
\text{The length of the latus rectum of the parabola } x= ay^2+by+c \text{ is -}
  • \dfrac{a}{4}
  • \dfrac{a}{3}
  • \dfrac{1}{a}
  • \dfrac{1}{4a}
The hyperbola \dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1 has its conjugate axis of length 5 and passes through the point (2, 1). The length of latus rectum is :
  • \dfrac{5}{4}\sqrt{29}
  • \dfrac{5}{8}\sqrt{29}
  • \sqrt{29}
  • \dfrac{\sqrt{29}}{4}
The graph of the curve x^2 + y^2 - 2xy - 8x - 8y + 32 = 0 falls wholly in the
  • first quadrant
  • second quadrant
  • third quadrant
  • none of these
f(\displaystyle \mathrm{m}_{\mathrm{i}}, \frac{1}{\mathrm{m}_{\mathrm{i}}}) , \mathrm{i}=1,2,3,4 are four distinct points on the circle with centre origin, then value of \mathrm{m}_{1}\mathrm{m}_{2}\mathrm{m}_{3}\mathrm{m}_{4} is equal to
  • 0
  • -1
  • 1
  • -a^{2}
lf the equation 136 (x^{2}+y^{2})=(5x+3y+7)^{2} represents a conic, then its length of latus rectum is
  • \displaystyle \frac{7}{2\sqrt{34}}
  • \displaystyle \frac{7}{\sqrt{34}}
  • \displaystyle \frac{14}{\sqrt{34}}
  • \displaystyle \frac{9}{\sqrt{34}}
A point P(x, y) moves in XY plane such that x = a\cos^2 \theta and y = 2a \sin \theta, where \theta is a parameter. The locus of the point P is
  • circle
  • ellipse
  • unbounded parabola
  • part of a parabola
Let P point on the circle x^2 + y^2 = 9, Q a point on the line 7x + y + 3 = 0, and the perpendicular bisector of PQ be the line x - y + 1 = 0. Then the coordinate of P are
  • (0, -3)
  • (0, 3)
  • \displaystyle \left ( \frac{72}{25}, -\frac{21}{25} \right)
  • \displaystyle \left ( -\frac{72}{25}, \frac{21}{25} \right)
The length of latus rectum of the parabola whose parametric equations are x = t^{2} + t + 1, y = t^{2}-  t + 1, where t \in R, is equal to?
  • \sqrt{2}
  • \sqrt{4}
  • \sqrt{8}
  • \sqrt{6}
For the variable, the locus of the point of intersection of the lines 3tx-2y+6t=0 and 3x+2ty-6=0 is
  • the ellipse \cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { y }^{ 2 } }{ 9 } =1
  • the ellipse \cfrac { { x }^{ 2 } }{ 9 } +\cfrac { { y }^{ 2 } }{ 4 } =1
  • the hyperbola \cfrac { { x }^{ 2 } }{ 4 } -\cfrac { { y }^{ 2 } }{ 9 } =1
  • the hyperbola \cfrac { { x }^{ 2 } }{ 9 } -\cfrac { { y }^{ 2 } }{ 4 } =1
If the line 3x+4y=24 and 4x+3y=24 intersects the coordinates axes at A,B,C and D, then the equation of the circle passing through these 4 points  is
  • x^{2}+y^{2}-12x-12y+48=0
  • x^{2}+y^{2}-14x-14y+48=0
  • x^{2}+y^{2}-12x-12y+46=0
  • x^{2}+y^{2}-14x-14y+46=0
The equation of a straight line drawn through the focus of the parabola y^2=-4x at an angle of 120^o to the x-axis is.
  • y+\sqrt 3(x-1)=0
  • y-\sqrt 3(x-1)=0
  • y+\sqrt 3(x+1)=0
  • y-\sqrt 3(x+1)=0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers