CBSE Questions for Class 11 Engineering Maths Introduction To Three Dimensional Geometry Quiz 10 - MCQExams.com

The distance of P(2,-3) from the x-axis is......
  • 2
  • -3
  • 3
  • $$\sqrt{13}$$
If the distance between the points (2,-3) and (5,b) is 5 , then b=.........
  • 1
  • 2
  • 7
  • 5
Find the centroid of a triangle, mid-points of whose sides are $$(!,2,-3),(3,0,1)$$ and $$(-1,1,-4)$$
  • $$(-1,-1,-2)$$
  • $$(-1,2,-2)$$
  • $$(-1,1,-2)$$
  • $$(1,1,-2)$$
The point in the $$xy -$$ plane which is equidistant from $$(2, 0, 3), (0, 3, 2)$$ and $$(0,0, 1)$$ is 
  • $$(1, 2,3)$$
  • $$(-3, 2, 0)$$
  • $$(3, -2. 0)$$
  • $$(3, 2, 0)$$
  • $$(3, 2, 1)$$
The foot of the perpendicular from the point $$A(7, 14, 5)$$ to the plane $$2x+4y-z=2$$ is?
  • $$(3, 1, 8)$$
  • $$(1, 2, 8)$$
  • $$(3, -3, 5)$$
  • $$(5, -3, -4)$$
The coordinates of the point where the line through the points $$A(5,1,6)$$ and $$B(3,4,1)$$ crosses the yz-plane is
  • $$(0,17,-13)$$
  • $$\left( 0,\cfrac { -17 }{ 2 } ,\cfrac { 13 }{ 2 } \right) $$
  • $$\left( 0,\cfrac { 17 }{ 2 } ,\cfrac { -13 }{ 2 } \right) $$
  • none of these
The point on the line $$\dfrac {x - 2}{1} = \dfrac {y + 3}{-2} = \dfrac {z + 5}{-2}$$ at a distance of 6 from the point $$\left ( 2,-3,-5 \right )$$ is
  • $$\left ( 3,-5,-3 \right )$$
  • $$\left ( 4,-7,-9 \right )$$
  • $$\left ( 0,2,-1 \right )$$
  • $$\left ( -3,5,3 \right )$$
The distance between two points P and Q is d and the length of their projections of PQ on the coordinate planes are $$d_1,d_2,d_3$$. Then $$d_1^2 +d_2^2 + d_3^2 = kd^2$$ where K is
  • $$1$$
  • $$5$$
  • $$3$$
  • $$2$$
The shortest distance between the lines $$\dfrac {x - 3}{2} = \dfrac {y + 15}{-7} = \dfrac {z - 9}{5}$$ and $$\dfrac {x + 1}{2} = \dfrac {y - 1}{1} = \dfrac {z - 9}{-3}$$ is
  • $$2 \sqrt 3$$
  • $$4 \sqrt 3$$
  • $$3 \sqrt 6$$
  • $$5 \sqrt 6$$
The ratio in which the plane $$\overrightarrow{r} \cdot \left (\overrightarrow{i}  - 2 \overrightarrow{j}  + 3 \overrightarrow{k}   \right ) = 17$$ divides the line joining the points $$ -2 \overrightarrow{i}  + 4 \overrightarrow{j}  + 7 \overrightarrow{k} $$ and  $$ 3 \overrightarrow{i}  - 5 \overrightarrow{j}  + 8 \overrightarrow{k} $$
  • 1 : 5
  • 1 : 10
  • 3 : 5
  • 3 : 10
The point on the line $$\frac{x - 2} {1} = \frac{y + 3} {-2} = \frac{z + 5} {-2} $$ at a distance of 6 from the point $$\left ( 2, -3, -5 \right )$$ is
  • $$\left ( 3, -5, -3 \right )$$
  • $$\left ( 4, -7, -9 \right )$$
  • $$\left ( 0,2, -1 \right )$$
  • $$\left ( -3, 5, 3 \right )$$
The points $$A(1,2,-1),B(2,5,-2),C(4,4,-3)$$ and $$D(3,1,-2)$$ are
  • collinear
  • vertices of a rectangle
  • vertices of a square
  • vertices of a rhombus
Let $$A \left ( 2\hat{i}+3\hat{j}+5\hat{k} \right )B\left ( -\hat{i}+3\hat{j}+2\hat{k} \right ) $$and $$ C \left ( \lambda \hat{i}+5\hat{j}+\mu\hat{k} \right )$$ are vertices of a triangle and its median through $$A$$ is equally inclined to the positive directions of the axes. The value of $$\lambda+\mu$$ is equal to
  • $$-7$$
  • $$2$$
  • $$7$$
  • $$17$$
If $$(0, b, 0)$$ is the centroid of the triangle formed by the points $$(4, 2, -3)$$ , $$({a}, -5, 1)$$ and $$(2, -6, 2)$$ . If $$a ,b$$ are the roots of the quadratic equation $$ x^2+px+q = 0 $$, then $$p,q$$ are 
  • $$9,18$$
  • $$-9,-18$$
  • $$3,-18$$
  • $$-3,18$$
lf $$OABC$$ is a tetrahedron such that the $$OA^{2}+BC^{2}=OB^{2}+CA^{2}=OC^{2}+AB^{2}$$, then which of the following is/are correct
  • $$AB\perp OC$$
  • $$OB\neq CA$$
  • $$OC=AB$$
  • $$AB\perp BC$$
The plane $$\displaystyle ax + by + cz + (-3) = 0$$ meet the co-ordinate axes in $$A, B, C$$. The centroid of the triangle is
  • $$\displaystyle (3a, 3b, 3c)$$
  • $$\displaystyle \left(\frac {3}{a}. \frac {3}{b}, \frac {3}{c}\right)$$
  • $$\displaystyle \left(\frac {a}{3}. \frac {b}{3}, \frac {c}{3}\right)$$
  • $$\displaystyle \left(\frac {1}{a}. \frac {1}{b}, \frac {1}{c}\right)$$
$$ABCD$$ is a parallelogram. $$L$$ is a point on $$BC$$  which divides $$BC$$ in the ratio $$1 : 2$$. $$AL$$ intersects $$BD$$ at $$P$$. $$M$$ is a point on $$DC$$ which divides $$DC$$ in the ratio $$1 : 2$$ and AM intersects $$BD$$ in $$Q$$.

Point $$P$$ divides $$AL$$ in the ratio
  • $$1 : 2$$
  • $$1 : 3$$
  • $$3 : 1$$
  • $$2 : 1$$
If the vertices of a triangle are $$(-1,6,-4),(2,1,1)$$ and $$(5,-1,0)$$ then the centroid of the triangle is
  • $$(6,6,-3)$$
  • $$(2,2,-1)$$
  • $$\left ( 3,3,-\displaystyle \frac{3}{2} \right )$$
  • none of these
The coordinates of a point which is equidistant from the point $$(0,0,0),(a,0,0),(0,b,0)$$ and $$(0,0,c)$$ are given by
  • $$\displaystyle \left( \frac { a }{ 2 } ,\frac { b }{ 2 } ,\frac { c }{ 2 }  \right) $$
  • $$\displaystyle \left( \frac { -a }{ 2 } ,\frac { -b }{ 2 } ,\frac { c }{ 2 }  \right) $$
  • $$\displaystyle \left( \frac { a }{ 2 } ,\frac { -b }{ 2 } ,\frac { -c }{ 2 }  \right) $$
  • $$\displaystyle \left( \frac { -a }{ 2 } ,\frac { b }{ 2 } ,\frac { -c }{ 2 }  \right) $$
If $$A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C= \left ( \sqrt{2},\sqrt{2},0 \right )$$ and $$D= \left ( \displaystyle \frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17} \right )$$, then $$ABCD$$ is a
  • rhombus
  • square
  • parallelogram
  • none of these
The equation of motion of a rocket are: $$x=2t,y=-4t,z=4t,$$ where the time $$t$$ is given in seconds and the coordinate of a moving point in kilometers. At what distance will the rocket be from the starting point $$O(0,0,0)$$ in $$10$$ seconds ?
  • $$60$$ km
  • $$30$$ km
  • $$45$$ km
  • None of these
What is the distance in space between $$(1,0,5)$$ and $$(-3,6,3)$$?
  • $$4$$
  • $$6$$
  • $$2\sqrt { 11 } $$
  • $$2\sqrt { 14 } $$
  • $$12$$
A triangle $$ABC$$ is placed so that the midpoints of its sides are on the $$x, y$$ and $$z$$ axes respectively. Lengths of the intercepts made by the plane containing the triangle on these axes are respectively $$\displaystyle \alpha ,\beta ,\gamma$$, then the coordinates of the centroid of the triangle $$ABC$$ are
  • $$\displaystyle \left (- \dfrac {\alpha }{3}, \dfrac {\beta }{3}, \dfrac {\gamma }{3} \right )$$
  • $$\displaystyle \left (\dfrac {\alpha }{3},- \dfrac {\beta}{3}, \dfrac {\gamma}{3}\right)$$
  • $$\displaystyle \left ( \dfrac {\alpha }{3},\dfrac { \beta }{3},-\dfrac {\gamma }{3} \right )$$
  • $$\displaystyle \left ( \dfrac {\alpha }{3}, \dfrac {\beta }{3},\dfrac {\gamma }{3} \right )$$
Point A is $$\displaystyle a+2b,$$ and a divides AB in the ratio 2 :The position vector of B is
  • $$\displaystyle 2a-b$$
  • $$\displaystyle b-2a$$
  • $$\displaystyle a-3b$$
  • b
$$D(2, 1, 0), E(2, 0, 0), F(0, 1, 0)$$ are mid point of the sides $$BC, CA, AB$$ of $$\Delta$$ $$ABC$$ respectively, The the centroid of $$\Delta$$ABC is
  • $$\left ( \displaystyle \frac{1}{3},\, \displaystyle \frac{1}{3},\, \displaystyle \frac{1}{3} \right )$$
  • $$\left ( \displaystyle \frac{4}{3},\, \displaystyle \frac{2}{3},\, 0 \right )$$
  • $$\left (- \displaystyle \frac{1}{3},\, \displaystyle \frac{1}{3},\, \displaystyle \frac{1}{3} \right )$$
  • $$\left ( \displaystyle \frac{2}{3},\, \displaystyle \frac{1}{3},\, \displaystyle \frac{1}{3} \right )$$
If $$P(x,y,x)$$ is a point on the line segment joining $$Q(2,2,4)$$ and $$R(3,5,6)$$ such that the projection of $$\overline { OP } $$ on the axis are $$\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } ,\frac { 26 }{ 5 } ,$$ respectively, then $$P$$ divides $$QR$$ in the ratio
  • $$1:2$$
  • $$3:2$$
  • $$2:3$$
  • $$1:3$$
There are three points with position vectors $$ -2a+3b+5c, a+2b+3c $$ and$$ 7a-c$$. What is the relation between the three points?
  • Collinear
  • Forms a triangle
  • In different plane
  • None of the above
The plane $$ax+by+cz+d=0$$ divides the line joining the points $$\left( { x }_{ 1 },{ y }_{ 1 },{ z }_{ 1 } \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 },{ z }_{ 2 } \right) $$ in the ratio
  • $$\displaystyle \frac { -\left( a{ x }_{ 1 }+b{ y }_{ 1 }+c{ z }_{ 1 }+d \right) }{ \left( a{ x }_{ 2 }+b{ y }_{ 2 }+c{ z }_{ 2 }+d \right) } $$
  • $$\displaystyle \frac { \left( a{ x }_{ 1 }+b{ y }_{ 1 }+c{ z }_{ 1 }+d \right) }{ \left( a{ x }_{ 2 }+b{ y }_{ 2 }+c{ z }_{ 2 }+d \right) } $$
  • $$\displaystyle \frac { a{ x }_{ 1 }{ x }_{ 2 }+b{ y }_{ 1 }{ y }_{ 2 }+c{ z }_{ 1 }{ z }_{ 2 } }{ { d }^{ 2 } } $$
  • None of these
The set of points in space 4 inches from a given line and 4 inches from a given point on this line is ______ , if given point lies on the given line.

  • a set consisting of two points
  • a set consisting of four points
  • a set consisting of two circles
  • the empty set
Let  $$\displaystyle a,b,c \epsilon R$$ such that $$abc = p$$ and $$qa-b = 0$$, where $$ p$$ and $$q$$ are fixed positive number, then minimum distance of the point $$(a, b, c)$$ from origin in the three dimensional coordinate system is: 
  • $$\displaystyle \sqrt{3}\left ( \frac{p(q^{2}+1)}{2q} \right )^{1/3}$$
  • $$\displaystyle \sqrt{3}\left ( \frac{p(q^{2}+1)}{q} \right )^{1/3}$$
  • $$\displaystyle \sqrt{3}(p)^{1/3}$$
  • $$\displaystyle \sqrt{2}\left ( \frac{p}{q} \right )^{1/2}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers