Explanation
Step - 1: Writing equations using distance formula
Let the point which is equidistant from A(a,0,0), B(0,b,0), C(0,0,c) and O(0,0,0) be P(x, y, z)
∴ AP = BP = CP = OP
⇒ √(x - a)2 + y2 + z2 = √x2 + (y - b)2 + z2 = √x2 + y2 + (z - c)2 = √x2 + y2 + z2
Squaring all sides,
⇒ (x - a)2 + y2 + z2 = x2 + (y - b)2 + z2 = x2 + y2 + (z - c)2 = x2 + y2 + z2
⇒ x2 + y2 + z2 - 2ax + a2 = x2 + y2 + z2 - 2by + b2 = x2 + y2 + z2 - 2zc + c2 = x2 + y2 + z2
⇒ a2 - 2ax = b2 - 2by = c2 - 2cz = 0
Step - 2: Solving for x, y and z
∵ a2 - 2ax = b2 - 2by = c2 - 2cz = 0
∴ a2 - 2ax = 0
⇒ 2ax = a2
⇒ x = a2
Similarly, b2 - 2by = 0
⇒ 2by = b2
⇒ y = b2
Similarly, c2 - 2cz = 0
⇒ 2cz = c2
⇒ z = c2
So the point is (a2, b2, c2)
Hence option D is correct
The coordinates of the vertices of the triangle are given by (1,2,−3),(b,0,1),(−1,1,−4)
Accordingly the coordinates of the centroid of this triangle will be given by
(b3,1,−2)
Hence, b3 =1 Or, b=3
and a=−2
So a−b=−5
Please disable the adBlock and continue. Thank you.