CBSE Questions for Class 11 Engineering Maths Introduction To Three Dimensional Geometry Quiz 2 - MCQExams.com

Ratio in which the $$xy-$$plane divides the join of $$(1, 2, 3)$$ and $$(4, 2, 1)$$ is 
  • $$3:1$$ internally
  • $$3:1$$ externally
  • $$1:2$$ internally
  • $$2:1$$ externally
The equation of the set of points which are equidistant from the points $$(1, 2, 3)$$ and $$(3, 2, -1)$$.
  • $$x-2z=0$$
  • $$2x-z=0$$
  • $$2x+y=0$$
  • $$x-2y=0$$
$$A(3, 2, 0), B(5, 3, 2), C(-9, 6, -3)$$ are three points forming a triangle. If $$AD$$, the bisector of $$\angle BAC$$ meets $$BC$$ in $$D$$ then coordinates of $$D$$ are
  • $$\left (-\dfrac {19}{8}, \dfrac {57}{16}, \dfrac {17}{16}\right )$$
  • $$\left (\dfrac {19}{8}, -\dfrac {57}{16}, \dfrac {17}{16}\right )$$
  • $$\left (\dfrac {19}{8}, \dfrac {57}{16}, \dfrac {17}{16}\right )$$
  • None of these
$$A=\left(2,4,5\right)$$ and $$B=\left(3,5,-4\right)$$ are two points. If the $$xy$$-plane,  $$yz$$-plane divide $$AB$$ in the ratios $$a:b,p:q$$ respectively then $$\dfrac{a}{b}+\dfrac{p}{q}$$=
  • $$\dfrac{7}{15}$$
  • $$\dfrac{-7}{12}$$
  • $$\dfrac{7}{12}$$
  • $$\dfrac{22}{25}$$
If $$z = \cos \dfrac{\pi }{6} + i\sin \dfrac{\pi }{6}$$, then
  • $$\left| z \right| = 1,\arg z = \dfrac{\pi }{4}$$
  • $$\left| z \right| = 1,\arg z = \dfrac{\pi }{6}$$
  • $$\left| z \right| = \dfrac{{\sqrt 3 }}{2},\arg z = \dfrac{{5\pi }}{{24}}$$
  • $$\left| z \right| = \dfrac{{\sqrt 3 }}{2},\arg z = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 2 }}$$
The x-coordinate of a point on the line joining the points $$P(2,2,1)$$ and $$Q(5,1,-2)$$ is $$4$$. Find its z-coordinate.
  • $$-1$$
  • $$-2$$
  • $$1$$
  • $$2$$
Solve the following differential equation.
$$\dfrac{dy}{dx}=x-1$$.
  • $$y=x^2+x$$
  • $$y=x^2$$
  • $$y=x^2-x$$
  • None of the above
The distance between (5,1,3) and the line x=3, y=7+t, z=1+t is
  • 4
  • 2
  • 6
  • 8
The perimeter of triangle with vertices at $$(1,0,0) , (0,1,0) and (0,0,1)$$ is :
  • $$3$$
  • $$2$$
  • $$2\sqrt {2}$$
  • $$3\sqrt {2}$$
If the points $$A(9, 8, -10), B(3, 2, -4)$$ and $$C(5, 4, -6)$$ be collinear, then the point $$C$$ divides the line $$AB$$ in the ratio 
  • $$2:1$$
  • $$3:1$$
  • $$1:2$$
  • $$-1:2$$
Algebraic sum of intercepts made by the plane x+3y-4z+6=0 on the axes is 
  • 7
  • 0
  • $$\frac{13}{2}$$
  • $$-\frac{13}{2}$$
If $$OA$$ is equally inclined to $$OX, OY$$ and $$OZ$$ and if $$A$$ is $$\sqrt 3 $$ units from the origin then $$A$$ is
  • $$\left( {3,3,3} \right)$$
  • $$\left( { - 1,\,1,\, - 1} \right)$$
  • $$\left( { - 1,\,1,\,1} \right)$$
  • $$\left( {1,\,1,\,1} \right)$$
The distance between the points $$(-1,2,3)$$ and P is $$13$$. Then $$P=$$
  • $$(2,6,-9)$$
  • $$(-2,6,9)$$
  • $$(2,6,9)$$
  • $$(2,-6,9)$$
The distance between the parallel planes given by the equations, $$\vec{r}.(2\hat{i}-2\hat{j}+\hat{k})+3=0$$ and $$\vec{r}.(4\hat{i}-4\hat{j}+2\hat{k})+5=0$$ is-
  • $$1/2$$
  • $$1/3$$
  • $$1/4$$
  • $$1/6$$
The number of octants in which $$Z$$ coordinate is positive is
  • $$2$$
  • $$3$$
  • $$4$$
  • $$1$$
If $$\overline { a } ,\overline { b } $$ are the position vectors of $$A$$ and $$B$$ then one of the following points lie on $$\overline { AB } $$
  • $$\cfrac{2(\overline { a } +\overline { b } )}{3}$$
  • $$\cfrac{(\overline { a } -\overline { b } )}{3}$$
  • $$\cfrac{(\overline { a } +\overline { b } )}{3}$$
  • $$\cfrac{2\overline { a } +2\overline { b } }{3}$$
  • None of these
The distance between the points(4,3,7) and (1,-1,-5) is
  • 7
  • 12
  • 13
  • 25
If $$L, M$$ are the feet of the perpendiculars from $$(2, 4, 5)$$ to the $$xy$$-plane, $$yz$$-plane respectively, then the distance $$LM$$ is:
  • $$\sqrt{41}$$
  • $$\sqrt{20}$$
  • $$\sqrt{29}$$
  • $$3\sqrt{5}$$
The name of the figure formed by the points $$(0, 0, 0), (1, 0, 1)$$ and $$(0, 1, 1)$$ is
  • a straight line
  • an isosceles triangle
  • an equilateral triangle
  • a scalene triangle
The name of the figure formed by the points $$(3, -5, 1), (-1, 0, 8)$$ and $$(7, -10, -6)$$ is
  • a triangle
  • a straight line
  • an isosceles triangle
  • an equilateral triangle
If two vertices of an equilateral triangle are $$(2, 1, 5)$$ and $$(3, 2, 3)$$, then its third vertex is:
  • $$(1, 2, 4)$$
  • $$(4, 0, 4)$$
  • $$(0, -4, 4)$$
  • $$(4, 4, 1)$$
The point which is equidistant from the points $$(a, 0, 0), (0, b, 0), (0, 0, c)$$ and $$(0, 0, 0)$$ is:
  • $$(a,b,c)$$
  • $$(\sqrt{{a}},\sqrt{{b}},\sqrt{{c}})$$
  • $$(2a,2b,2c)$$
  • $$\left (\dfrac {a}{2}, \dfrac {b}{2}, \dfrac {c}{2}\right)$$
The point which is equidistant from the points $$(-1, 1, 3), (2, 1, 2), (0, 5, 6)$$ and $$(3,2, 2)$$ is
  • $$(-1, 3, 4)$$
  • $$(3, 1, 4)$$
  • $$(1, 3, 4)$$
  • $$(4,1, 3)$$
If the extremities of a diagonal of a square are $$(1, -2, 3)$$ and $$(2, -3, 5)$$, then the length of its side is:
  • $$\sqrt{6}$$
  • $$\sqrt{3}$$
  • $$\sqrt{5}$$
  • $$\sqrt{7}$$
If $$A, B$$ are the feet of the perpendiculars from $$(2, 4, 5)$$ to the $$x$$-axis, $$y$$-axis respectively, then the distance $$AB$$ is
  • $$2\sqrt{5}$$
  • $$\sqrt{29}$$
  • $$\sqrt{41}$$
  • $$3\sqrt{5}$$
If $$(p, q, r)$$ is equidistant from $$(1, 2, -3), (2, -3, 1)$$ and $$(-3, 1, 2)$$, then $$p +q + r$$ $$=$$
  • $$-1$$
  • $$1$$
  • $$0$$
  • $$2$$
If $$A(0, 4, 1), B(a, b, c), C(4, 5, 0), D(2, 6, 2)$$ are the consecutive vertices of a square, then the distance $$BD$$ is:
  • $$\sqrt{34}$$
  • $$6$$
  • $$18$$
  • $$3\sqrt{2}$$
$$A = (1, -1, 2)$$ and $$B =$$ $$(2, 3, 7)$$ are two points. lf $$P,\ O$$ divide $$AB$$ in the ratios $$2:3, -2:3$$ respectively then $$P_x+Q_y=$$
  • $$\displaystyle \frac{-38}{5}$$
  • $$\displaystyle \frac{38}{5}$$
  • $$\displaystyle \frac{-2}{5}$$
  • $$\displaystyle \frac{-47}{6}$$
$$\mathrm{If}   \mathrm{A}=(1, 2, 3)$$ , $$\mathrm{B}=(2,3, 4)$$ and $$\mathrm{C}$$ is a point of trisection of$$\mathrm{A}\mathrm{B}$$ such that $$\displaystyle \mathrm{C}_{\mathrm{x}}+\mathrm{C}_{\mathrm{y}}=\frac{13}{3}$$ then $$\mathrm{C}_{\mathrm{z}}=$$
  • $$\displaystyle \dfrac{10}{3}$$
  • $$\displaystyle \dfrac{11}{3}$$
  • $$\displaystyle \dfrac{11}{2}$$
  • $$11$$
If $$(1, 1, a)$$ is the centroid of the triangle formed by the points $$(1, 2, -3)$$ , $$(\mathrm{b}, 0, 1)$$ and $$(-1, 1, -4)$$ then $$a-b$$ $$=$$
  • $$-5$$
  • $$-7$$
  • $$5$$
  • $$1$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers