Explanation
{\textbf{Step -1: Form equation}}
{\text{Let A }= (3,4), \text{C } = (6,5) \text{as they are end points of the diagonal and B }= (2,1)}
{\text{Let the fourth vertex D }= (x,y)}
{\text{We know that the diagonals of a parallelogram bisect each other}}{\text{. }}
{\text{So, the midpoint of AC is same as the mid point of BD}}{\text{.}}
{\text{Mid point of two points }}({x_1},{y_1}) {\text{and }}({x_2},{y_2})
{\text{which}}\;{\text{ is calculated by the formula}};(\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2})
{\textbf{Step -2: Find fourth point of vertex}}
{\text{So, midpoint of AC = Mid point of BD}}
\Rightarrow \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)
\Rightarrow \left( {\dfrac{{3 + 6}}{2},\dfrac{{4 + 5}}{2}} \right) = \left( {\dfrac{{2 + x}}{2},\dfrac{{1 + y}}{2}} \right)
{\text{So }}\dfrac{{3 + 6}}{2} = \dfrac{{2 + x}}{2}\;{\text{and }}\dfrac{{4 + 5}}{2} = \dfrac{{1 + y}}{2}
{\text{So, }}\dfrac{9}{2} = \dfrac{{2 + x}}{2}
\Rightarrow 9 = 2 + x
\Rightarrow x = 7
{\text{and }}\dfrac{9}{2} = \dfrac{{1 + y}}{2}
\Rightarrow 9 = 1 + y
\Rightarrow y = 8
{\text{So fourth vertex is (7,8)}}
{\textbf{Hence the correct answer is option D}}{\text{.}}
Please disable the adBlock and continue. Thank you.