CBSE Questions for Class 11 Engineering Maths Introduction To Three Dimensional Geometry Quiz 9 - MCQExams.com

The ratio in which the plane $$x - 2y + 3z = 17$$ divides the line joining $$(-2, 4, 7)$$ and (3, -5, 8) is 
  • $$1:2$$
  • $$3 : 1$$
  • $$3 : 10$$
  • $$10 : 1$$
In the $$\Delta ABC$$ $$AB = \sqrt 2 ,AC = \sqrt {20} ,$$ B=$$(3,2,0)$$ and C=$$(0,1,4)$$ then the length of the median passing through A is 
  • $$\dfrac{3}{2}$$
  • $$\dfrac{9}{2}$$
  • $$\dfrac{3}{{\sqrt 2 }}$$
  • $$\dfrac{{\sqrt 3 }}{2}$$
If a point C with y coordinate 2, lies on the line joining the points A(-1, -4, 5) and B(4, 6, -5), then find the coordinates of C.
  • (2, 2, -1)
  • (2, 1, 2)
  • (2, 0, 0)
  • (0, 2, 4)
The locus of a point P which moves such that $$PA^2-PB^2=2k^2$$ where A and B are $$(3, 4, 5)$$ and $$(-1, 3, -7)$$ respectively is 
  • $$8x+2y+24z-9+2k^2=0$$
  • $$8x+2y+24z-2k^2=0$$
  • $$8x+2y+24z+9+2k^2=0$$
  • $$8x-2y+24z-2k^2=0$$
The perimeter of the triangle formed by the points $$(1,0,0),(0,1,0),(0,0,1)$$ is 
  • $$\sqrt 2 $$
  • $$2\sqrt 2 $$
  • $$3\sqrt 2 $$
  • $$4\sqrt 2 $$
$$ABCD$$ is a tetrahedron. The principal medians (four in all ) and the lateral medians ( three in all ) are concurrent 
1228273_55c9980837ff4aebb6a6e897626f4a95.png
  • True
  • False
$$P$$ and $$Q$$ are points on the line joining $$A(-2,5)$$ and $$B(3,1)$$ such that $$AP=PQ=QB$$. Then, the distance of the midpoint of $$PQ$$ from the origin is
  • $$3$$
  • $$\frac {\sqrt 37}{4}$$
  • $$4$$
  • $$3.5$$
If A=(1,-2,-1) B=(4,0,-3)C=(1,2,-1),D=(2,-4,-5) Find the distance between AB and CD lines.
  • 40
  • 0
  • 80
  • 20
The distance between the points $$P(x,\,-1)$$ and $$Q(3,\,2)$$ is $$5$$ units. Find the value of $$x$$.
  • $$2,8$$
  • $$-2,9$$
  • $$1,8$$
  • $$-1,7$$
Find the co ordinates of points which trisect the line segment joining $$( 1 , - 2 )$$ and $$( - 3,4 )$$
  • $$\left( - \frac { 1 } { 3 } , 0 \right) \quad$$ and $$\left( - \frac { 5 } { 3 } , 2 \right)$$
  • $$\left( \frac { 1 } { 3 } , 0 \right)$$ and $$\left( - \frac { 5 } { 3 } , 2 \right)$$
  • $$\left( - \frac { 1 } { 3 } , 0 \right)$$ and $$\left( \frac { 5 } { 3 } , 2 \right)$$
  • None of the above
If G is the centroid of $$\triangle ABC$$ and BC = 3, CA = 4, AB = 5 then BG =
  • $$\dfrac { \sqrt { 73 } }{ 3 } $$
  • $$\dfrac { \sqrt { 13 } }{ 3 } $$
  • $$\dfrac { \sqrt { 52 } }{ 3 } $$
  • $$\dfrac { \sqrt { 26 } }{ 3 } $$
If R divides the line segment joining p(2,3,4)  and Q(4,5,6) in the ratio -3 : 2 , then the value of the parameter which represents R is 
  • 3
  • 2
  • 1
  • -1
If $$( 3,4 )$$ and $$( 6,5 )$$ are the extremities of a diagonal of a parallelogram and $$( 2,1 )$$ is is third vertex, then its fourth vertex is _______.
  • $$( - 1,0 )$$
  • $$( - 1,1 )$$
  • $$( 0,-1 )$$
  • $$( 7,8 )$$
If the point $$ A(3, -2, 4), B(1, 1, 1) $$ and $$ C(-1, 4, -2) $$ are collinear then $$ (C : AB)  $$
  • $$1 : 2$$
  • $$-2 : 1$$
  • $$-1 : 2$$
  • $$4 : 0$$
Centroid of triangle formed by foot of perpendiculars from (-3, -6, -9) on coordinate axes is:-
  • (-1, -2, -3)
  • (1, 2, 3)
  • (1, -2, -3)
  • (-1, -2, 3)
If $$( - 6 , - 4 ) , ( 3,5 ) , ( - 2,1 )$$ are the vertices of a parallelogram, then remaining vertex can be:

  • $$( 0 , - 1 )$$
  • $$( 7,10 )$$
  • $$( - 1,0 )$$
  • $$( - 11 , - 8 )$$
The distance of the point (1,3) from the line 2x-3y+9=0 measured along a line x-y+1=0 is
  • $$\sqrt 2$$
  • $$\sqrt 5$$
  • $$2\sqrt 2$$
  • 1
If $$L_1$$ is the line of intersection of the plane $$2x-2y+3z-2=0, x-y+z+1=0$$ and $$L_2$$ is the line of intersection of the plane   $$x+2y-z-3=0, 3x-y+2z-1=0$$, then the distance of origin from from the plane containing the lines $$L_1$$ + $$L_2$$ is :
  • $$\dfrac{1}{\sqrt{2}}$$
  • $$\dfrac{1}{4\sqrt{2}}$$
  • $$\dfrac{1}{2\sqrt{2}}$$
  • none of these
 Which one of the following 3D shapes does not have a vertex?  
  • Sphere
  • Pyramid
  • Prism
  • Cone
is a point on the line segment joining the points A(2,-3,4) and B(8,0,10). if the value of y-coordinate of C is-2, then the z-coordinate of c is ___________________.
  • 4
  • 6
  • -4
  • 5
Find the ratio on which the plane 3x + 4y - 5z = 1 divides the line joining the points (-2, 4, -6) and (3, -5, 8).
  • 3 : 4
  • 3 : 5
  • 4 : 3
  • 2 : 3
The centroid of triangle $$A(3,4,5);B(6,7,2);C(0,-5,2)$$ is
  • $$(3,2,3)$$
  • $$(5,2,1)$$
  • $$(2,5,1)$$
  • $$(3,4,1)$$
The shortest distances of a point from x-axis, y-axis and z-axis are 2,3,6 respectively. The distance of this point from the origin is
  • $$\frac{7}{\sqrt{2}}$$
  • 7
  • 11
  • $$\frac{49}{2}$$
If R divides the line segment joining P(2, 3, 4) and Q (4, 5, 6) in the ratio -3 : 2, then the value of the parameter which represents R is
  • $$=(8,9,10)$$
  • $$=(10,9,8)$$
  • $$=(10,8,9)$$
  • $$=(9,10,8)$$
If (2, 3, -1) is the midpoint of AB where A=(-1,5,3) then B =
  • (5, 1, -5)
  • (5, -1, 5)
  • (-5, 1, 5)
  • NONE OF THESE
The coordinates of the point where the line through $$(3, -4, -5)$$ and $$(2, -3, 1)$$ crosses the plane passing through three points $$(2, 2, 1),(3, 0, 1)$$ and $$(4, -1, 0)$$ is
  • $$(1, 2, 7)$$
  • $$(-1, 2, -7)$$
  • $$(1, -2, 7)$$
  • None of these
Locate the point $$(3, 2, -1)$$ in $$3\text{D}$$ octant.
  • $$1st$$ Octant
  • $$2nd$$ Octant
  • $$7th$$ Octant
  • $$8th$$ Octant
If the distance of the point P(4, 3, 5) from the Y-axis is $$\lambda $$, then the value of $${ 7\lambda  }^{ 2 }$$ is 
  • $$287$$
  • $$7\sqrt { 41 } $$
  • $$63$$
  • $$21$$
Let $$A(3, 0, -1), B(2, 10, 6)$$ and $$C(1, 2, 1)$$ be the vertices of a triangle and $$M$$ be the midpoint of $$AC$$. If $$G$$ divides $$BM$$ in the ratio, $$2 : 1$$, then $$\cos (\angle GOA)$$ ($$O$$ being the origin) is equal to:
  • $$\dfrac{1}{\sqrt{30}}$$
  • $$\dfrac{1}{6\sqrt{10}}$$
  • $$\dfrac{1}{\sqrt{15}}$$
  • $$\dfrac{1}{2\sqrt{15}}$$
$$30$$ consider at three dimensional figure represented by $$xyz^2=2$$, then its minimum distance from origin is?
  • $$2$$
  • $$4$$
  • Both A & B
  • None of the above
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers