CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 11 - MCQExams.com

The value of $$\displaystyle \lim_{x\rightarrow 0} \left (\dfrac {\sin 3x}{\tan x}\right )^{4}$$ is
  • $$0$$
  • $$81$$
  • $$4$$
  • $$1$$
The value of $$\displaystyle \lim_{x\rightarrow \infty} \sin \dfrac {\pi}{4x} \cos \dfrac {\pi}{4x}$$ is
  • $$\pi/4$$
  • $$\pi/2$$
  • $$0$$
  • $$\infty$$

Given that $$f (x)$$
is a differentiable function of $$ x$$ and that $$f(x)$$ . $$f (y)$$ =  $$f (x) $$+ $$f (y)$$ + $$f (xy) -2$$ and that
$$f (2) =5$$.

Then $$f (3)$$ is equal to?

  • $$6$$
  • $$24$$
  • $$15$$
  • $$19$$
lf $${f}'({x})={g}({x})$$ and $${g}'({x})=-{f}({x})$$ for all $$x$$ and $${f}(2)=4= {g}(2)$$, then $${f}^{2}(24)+{g}^{2}(24)$$ is
  • $$32$$
  • $$24$$
  • $$64$$
  • $$48$$
Assertion(A): Let $${ f }({ x })$$ be twice differentiable function such that $$f^{ '' }(x)=-{ f }({ x })$$ and $$f^{ ' }(x)={ g }({ x })$$. lf $${ h }({ x })=[{ f }({ x })]^{ 2 }+[{ g }({ x })]^{ 2 }$$ and $${ h }(1)=8$$, then $${ h }(2)=8$$

Reason (R): Derivative of a constant function is zero.
  • Both A and R are true R is correct reason of A
  • Both A and R are true R is not correct reason of A
  • A is true but R is false
  • A is false but R is true
Assertion (A): lf $$f(x)=\cos^{2}x+\cos^{2}\left(x+\dfrac{\pi}3\right)- \cos x \cos \left(x+\dfrac{\pi}3\right)$$ then $$f'(x)=0$$

Reason(R): Derivative of constant function is zero
  • Both A & R are true, R is correct explanation for A
  • Both A & R are true,R is not correct explanation for A
  • A is true but R is false
  • A is false but R is true

 Let $$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\mathrm{x}^{\mathrm{n}}\sin\frac{1}{\mathrm{x}},\quad  \mathrm{x}\neq 0\\0, \quad \mathrm{x}=0\end{array}\right.$$ , then f(x) is continuous but not differentiable at x=0 if
  • $$\mathrm{n}\in(0, 1 ] $$
  • $$ \mathrm{n}\in[1, \infty)$$
  • $$\mathrm{n}\in(-\infty,0)$$
  • $$\mathrm{n}=0$$
The graph of the function $$y = f (x)$$ has a unique tangent at the point $$(e^{a} ,0)$$ through which the graph passes then $$\displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-sinf(x)}{3f(x)}$$ is
  • $$1$$
  • $$2$$
  • $$0$$
  • $$-1$$
$$f(x)=|x-1|+|x-3|$$ then $$f^{'}(2)=$$
  • $$-2$$
  • $$2$$
  • $$0$$
  • $$1$$
lf $$ \displaystyle \mathrm{f}(\mathrm{x})=\mathrm{x}.\sin \frac{1}{x}$$ for $$x \neq 0,\ \mathrm{f}(\mathrm{0})=0$$ then?
  • $$f$$ is continuous at $$ x=0$$
  • $$f$$ is differentiable at $$ x=0$$
  • $${f}'(0^{-})$$ exists but $${f}'(0^{+})$$ does not exist
  • $$f$$ is discontinuous at $$x=0$$
lf $$\mathrm{f}(\mathrm{x})$$ is a quadratic expression which is positive for all real vaues of $$\mathrm{x}$$ and $$\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}'(\mathrm{x})+\mathrm{f}''(\mathrm{x})$$ then for any real value of $$\mathrm{x}$$
  • $$\mathrm{g}(\mathrm{x})<0$$
  • $$\mathrm{g}(\mathrm{x})>0$$
  • $$\mathrm{g}(\mathrm{x})=0$$
  • $$\mathrm{g}(\mathrm{x})\underline{>}0$$
Let $$f$$ be a twice differentiable function such that $$f''\left( x \right) =-f\left( x \right) $$ and $$f'(x)=g(x).$$.
If $$h'\left( x \right) ={ \left[ f\left( x \right) \right]  }^{ 2 }+{ \left[ g\left( x \right) \right]  }^{ 2 },h\left( 1 \right) =6$$ and $$h(0)=4$$ then $$h(4)$$ is equal to?
  • $$16$$
  • $$12$$
  • $$13$$
  • None of these
If $$y=e^{\displaystyle\sqrt{x}}+e^{\displaystyle -\sqrt{x}}$$, then $$\displaystyle\frac{dy}{dx}$$ is equal to
  • $$\displaystyle\frac{e^{\displaystyle\sqrt{x}}-e^{\displaystyle -\sqrt{x}}}{2\sqrt{x}}$$
  • $$\displaystyle\frac{e^{\displaystyle\sqrt{x}}-e^{\displaystyle -\sqrt{x}}}{2x}$$
  • $$\displaystyle\frac{1}{2\sqrt{x}}\sqrt{y^2-4}$$
  • $$\displaystyle\frac{1}{2\sqrt{x}}\sqrt{y^2+4}$$
If for all $$x, y$$ the function f is defined by; $$f(x)+f(y)+f(x)\cdot f(y)=1$$ and $$f(x) > 0$$.When $$f(x)$$ is differentiable $$f'(x)= $$,
  • $$-1$$
  • $$1$$
  • $$0$$
  • cannot be determined
The function $$f(x)=e^x+x$$ being differentiable and one to one, has a differentiable inverse $$f^{-1}(x)$$, then find $$\dfrac {d}{dx} (f^{-1}(x))$$ at the point $$f(log_e 2)$$.
  • $$\dfrac {1}{3}$$
  • $$1$$
  • $$3$$
  • $$0$$
Given, $$f(x)=-\displaystyle \frac {x^3}{3}+x^2 \sin 1.5 a-x \sin a\cdot \sin 2a-5 arc \sin (a^2-8a+17)$$, then
  • $$f(x)$$ is not defined at $$x=sin 8$$
  • $$f' (sin 8) > 0$$
  • $$f' (x)$$ is not defined at $$x=sin 8$$
  • $$f'(sin 8) < 0$$
If $$\sqrt {y+x}+\sqrt {y-x}=c$$ (where $$c\neq 0$$), then $$\displaystyle \frac {dy}{dx}$$ has the value equal to
  • $$\displaystyle \frac {2x}{c^2}$$
  • $$\displaystyle \frac {x}{y+\sqrt {y^2-x^2}}$$
  • $$\displaystyle \frac {y-\sqrt {y^2-x^2}}{x}$$
  • $$\displaystyle \frac {c^2}{2y}$$
Let f be a twice differentiable such that $$f''(x)=-f(x)$$ and $$f'(x)=g(x)$$. If $$h(x)=\left \{f(x)\right \}^2+\left \{g(x)\right \}^2$$, where $$h(5)=11$$. Find $$h(10)$$
  • $$1$$
  • $$10$$
  • $$11$$
  • $$100$$
 Let $$\mathrm{f}(\mathrm{x})=\mathrm{x}+\tan^{-1}\mathrm{x}, \displaystyle \mathrm{g}(\mathrm{x})=\frac{\mathrm{x}}{1+\mathrm{x}^{2}}(\mathrm{x}>0)$$ Then
  • $$\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x}), \mathrm{x}>0$$
  • $$\mathrm{f}(\mathrm{x})>\mathrm{g}(\mathrm{x}), \mathrm{x}>0$$
  • $$\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})$$ in $$[1, \infty)$$
  • None of these
Find the derivative of $$|x|+a_0x^n+a_1x^{n-1}+a_2x^{n-2}+....+a_{n-1}x+a_n$$
  • $$\frac {x}{|x|}+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n-1}$$
  • $$1+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n-1}$$
  • $$\frac {x}{|x|}+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n}$$
  • None of these
If $$f(x)=\sqrt {x+2\sqrt {2x-4}}+\sqrt {x-2\sqrt {2x-4}}$$, then the value of $$10 f'(102^+)$$ is
  • $$-1$$
  • $$0$$
  • $$1$$
  • Does not exist
Let $$f(x)$$ be a polynomial function of second degree.If $$f(1)=f(-1)$$ and  $$a,b,c$$ are in A.P $$ f'(a)$$,$$f'(b)$$,$$f'(c)$$ are in 
  • G.P.
  • H.P.
  • A.G.P
  • A.P.
If $$\phi (x) =\displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$, then
  • $$\phi (x) = g(x)$$ for all x $$\in$$ R
  • $$\phi (x) = f(x)$$ for all x $$\in$$ R
  • $$\left\{\begin{matrix}g(x) & for -1 < x < 1\\ f(x) & for |x| \geq 1\end{matrix}\right.$$
  • $$\left\{\begin{matrix}g(x) & for |x| < 1\\ f(x) & for |x| > 1 \\\displaystyle \frac{f(x) + g(x)}{2} & for |x| = 1\end{matrix}\right.$$
Let $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 \le x \le 26$$ be a real valued function, then $$f'(x)$$ for $$1 < x < 26$$ is
  • $$0$$
  • $$\displaystyle\frac{1}{\sqrt{x - 1}}$$
  • $$2\sqrt{x - 1}$$
  • $$1$$
If $$\displaystyle \frac { \cos ^{ 4 }{ \theta  }  }{ x } +\frac { \sin ^{ 4 }{ \theta  }  }{ y } =\frac { 1 }{ x+y } $$ then $$\displaystyle \frac { dy }{ dx } =$$
  • $$xy$$
  • $$\tan ^{ 2 }{ \theta  } $$
  • $$0$$
  • $$\left( { x }^{ 2 }+{ y }^{ 2 } \right) \sec ^{ 2 }{ \theta  } $$
Let $$f$$ be a differentiable function satisfying $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R$$
Then,
  • $$f'(x) < 0$$ for all $$x \in R$$
  • $$f'(x) = 0$$ for all $$x \in R$$
  • $$f'(x) > 0$$ for all $$x \in R$$
  • none of these
Given  $$f(x)=-\displaystyle \frac{x^3}{3}+x^2\sin 1.5a-x\sin a.\sin 2a-5 \arcsin (a^2-8a+17)$$ then :
  • $$f(x)$$ is not defined at $$x=\sin 8$$
  • $${f}'(\sin 8)>0$$
  • $$f'(x)$$ is not defined at $$x=\sin 8$$
  • $${f}'(\sin 8)<0$$
Suppose, $$A=\displaystyle \frac {dy}{dx}$$ of $$x^2+y^2=4$$ at $$(\sqrt 2, \sqrt 2), B=\displaystyle \frac {dy}{dx}$$ of $$sin y+sin x=sin x\cdot sin y$$ at $$(\pi, \pi)$$ and $$C=\displaystyle \frac {dy}{dx}$$ of $$2e^{xy}+e^xe^y-e^x=e^{xy+1}$$ at $$(1, 1)$$, then $$(A-B-C)$$ has the value equal to .....
  • $$\displaystyle \frac { 1 }{ 2 }$$
  • $$\displaystyle \frac { 1 }{ 3 }$$
  • $$1$$
  • $$2$$
Suppose $$A=\displaystyle \frac{dy}{dx}$$ when $$x^2+y^2=4$$ at $$(\sqrt{2},\sqrt{2})$$,$$ B=\displaystyle \frac{dy}{dx}$$ when $$\sin y+ \sin x=\sin x-\sin y$$ at $$(\pi,\pi)$$ and $$C=\displaystyle  \frac{dy}{dx}$$ when $$2e^{xy}+e^x e^y-e^x-e^y=e^{xy+1}$$ at $$(1,1)$$, then $$(A+B+C)$$ has the value equal to 
  • $$-1$$
  • $$e$$
  • $$-3$$
  • $$0$$
If $$\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2$$ and $$\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1$$, 
then the value of $$\displaystyle\lim_{x\rightarrow a}{f(x)g(x)}$$ is?
  • Does not exist
  • Exists and is $$\displaystyle\frac{3}{4}$$
  • Exists and is $$\displaystyle-\frac{3}{4}$$
  • Exists and is $$\displaystyle\frac{4}{3}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers