Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 12 - MCQExams.com

If y=|cosx|+|sinx| then dydx at x=2π3 is
  • 132
  • 0
  • 12(31)
  • none of these
Let tanα.x+sinα.y=α and α cosecα.x+cosα.y=1 be two variable straight line, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when α0, the point P lies on the line
  • x=2
  • x=1
  • y+1=0
  • y=2
If y=xr=1tan111+r+r2 then dydx is equal to
  • 11+x2
  • 11+(1+x)2
  • 0
  • None of these
Let f and g be differentiable function such that {f}'\left ( x \right )=2g\left ( x \right ) and {g}'\left ( x \right )=-f\left ( x \right ), and let T\left ( x \right )=\left ( f\left ( x \right ) \right )^{2}-\left ( g\left ( x \right ) \right )^{2}. Then {T}'\left ( x \right ) is equal to
  • T(x)
  • 0
  • 2f(x)g(x)
  • 6f(x)g(x)
The value of \displaystyle \underset { n\rightarrow \infty  }{ lim } \left( \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +...+\frac { 1 }{ 6n }  \right)  is
  • \displaystyle \log { 2 }
  • \displaystyle \log { 6 }
  • \displaystyle 1
  • \displaystyle \log { 3 }
If the prime sign (') represents differentiation w.r.t. x and f^{'}=\sin x+\sin 4x.\cos x, then f^{'}\left ( 2x^{2}+\cfrac{\pi }{2} \right ) at x=\sqrt{\dfrac{\pi }{2}} is equal to
  • 0
  • -1
  • -2\sqrt{2\pi }
  • none of these
For n\epsilon N, let f\left ( x \right )=min\:\left \{ 1-\tan ^{n}x, 1-\sin ^{n}x, 1-x^{n} \right \}, x\epsilon \left ( -\cfrac {\pi}{2}, \cfrac {\pi}{2} \right ). The left hand derivative of f at x=\cfrac {\pi}{4} is
  • -2n
  • -2(n+1)
  • \displaystyle -n\frac{\pi }{4}
  • \displaystyle -n\left ( \frac{\pi }{4} \right )^{n-1}
If f ' (0) = 0 and f(x) is a differentiable and increasing function,then lim x \rightarrow 0  \frac {x.f ' (x^2)}{f ' (x)}
  • is always equal to zero
  • may not exist as left hand limit may not exist
  • may not exist as left hand limit may not exist
  • right hand limit is always zero
The left-handed derivative of f\left( x \right) =\left| x \right| \sin { \left( \pi x \right)  } at x=K where K is an integer, is :
  • { \left( -1 \right) }^{ K }\left( K-1 \right) \pi
  • { \left( -1 \right) }^{ K-1 }\left( K-1 \right) \pi
  • { \left( -1 \right) }^{ K }\ K\pi
  • { \left( -1 \right) }^{ K-1 }\ K\pi
If \sum _{ r=1 }^{ k }{ \cos ^{ -1 }{ \beta  }  } =\cfrac { k\pi  }{ 2 } for any k\ge 1 and A=\sum _{ r=1 }^{ k }{ { \left( { \beta  }_{ r } \right)  }^{ r } } , then \lim _{ x\leftarrow A }{ \cfrac { { \left( 1+x \right)  }^{ 1/3 }-{ \left( 1-2x \right)  }^{ 1/4 } }{ x+{ x }^{ 2 } }  } is equal to
  • 0
  • \cfrac{1}{2}
  • \cfrac { \pi }{ 2 }
  • \cfrac { 5 }{ 6 }
The value of \lim _{ x\rightarrow 0 }{ \left( { \left( \sin { x }  \right)  }^{ 1/x }+{ \left( 1+x \right)  }^{ \sin { x }  } \right)  } whre x> 0 is
  • 0
  • -1
  • 1
  • 2
The value of \displaystyle \lim_{x \rightarrow 1^{-}}\dfrac {1 - \sqrt {x}}{(\cos^{-1}x)^{2}}
  • \dfrac{-1}{4}
  • 1/2
  • 2
  • None of these
\displaystyle \lim_{x \rightarrow 0} \frac{ae^x + b cos x + c. e^{-x}}{sin^2 x} = 4 then b =
  • 2
  • 4
  • -2
  • -4
If \int_{0}^{x}(t^{2}+2t+2) dt, 2\leq x\leq 4
  • The maximum value of f(x) is \dfrac{136}{3}
  • The minimum value of f(x) is 10
  • The maximum value of f(x) is 26
  • None of these
If x\sqrt {1 + y}  + y\sqrt {1 + x}  = 0, then \dfrac {dy}{dx} is equal to
  • \cfrac{1}{(1+x)^{2}}
  • \cfrac{-1}{(1+x)^{2}}
  • \cfrac{1}{(1-x)^{2}}
  • None of these
\mathop {\lim }\limits_{x \to {a^ + }} {{\left\{ x \right\}\sin \left( {x - a} \right)} \over {{{\left( {x - a} \right)}^2}}} 

is equal to (where {.} denotes the fraction
part of x and a \in N

  • 0
  • 1
  • does not exist
  • none of thes
Consider the following statements:
S_1: \lim_\limits{x \to 0} \dfrac{[x]}{x} is an indeterminate form (where [.] denotes greatest integer function).
S_2: \lim_\limits{x\to\infty}\dfrac{sin(3^x)}{3^x}=0
S_3: \lim_\limits{x \to \infty}\sqrt{\dfrac{x- sinx}{x+cos^2x}} does not exist.
S_4:  \lim_\limits{n\to \infty}\dfrac{(n+2)!+(n+1)!}{(n+3)! }(n \in N=0
State, in order, whether S_1, S_2, S_3, S_4 are true or false
  • FTFT
  • FTTT
  • FTFF
  • TTFT
If {A_i} = \frac{{x - {a_i}}}{{\left| {x - {a_i}} \right|}}, \,i = 1,2,3,.....n and {a_1}< {a_2}< {a_3}....< {a_{n,}} \, then
\mathop {\lim }\limits_{x \to {a_m}} \left( {{A_1}{A_2}......{A_n}} \right), 1 \le m \le n
  • is equal to {\left( { - 1} \right)^m}
  • is equal to {\left( { - 1} \right)^{m + 1}}
  • is equal to {\left( { - 1} \right)^{n-m}}
  • is equal to {\left( { - 1} \right)^{n-m-1}}
If l=\lim\limits_{n\to 3}\dfrac{x^2-9}{\sqrt{x^2+7}-4} and m=\lim\limits_{n\to -3}\dfrac{x^2-9}{\sqrt{x^2+7}-4}, then
  • l\ne m
  • l=2m
  • l=-m
  • l=m
If \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right)\, = 4,then
  • a=1,b=4
  • a=1,b=-4
  • a=2,b=-3
  • a=2,b=3
Letf(\theta) = \dfrac{1}{tan^{9}\theta} {(1+tan\theta)^{10}+(2+tan\theta)^{10}+....+(20+tan\theta)^{10}}-20tan\theta. The left hand limit of f(\theta) as \theta \rightarrow \dfrac{\pi}{2} is:
  • 1900
  • 2000
  • 2100
  • 2200
if f\left( x \right) = \left\{ {\matrix{   {\cos \left[ x \right],} & {x \ge 0}  \cr    {\left| x \right| + a,} & {x < 0}  \cr   } } \right\} Find
the value of a , given that \mathop {\lim }\limits_{x \to 0} f\left( x \right)  exists,
where[.]  denotes
  • -1
  • 2
  • 1
  • 0
\displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 4 }  }{ { \left( \sin { 2x }  \right)  }^{ \sec ^{ 2 }{ 2x }  } } is equal to 
  • -\dfrac {1}{2}
  • \dfrac {1}{2}
  • e^{-\dfrac {1}{2}}
  • e^{\dfrac {1}{2}}
 \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { cot \,  x-cos\, x }{ \left( \pi -{ 2x } \right)^ 3 } equals
  • \cfrac {1} {24}
  • \cfrac {1} {16}
  • \cfrac {1} {8}
  • \cfrac {1} {4}
\displaystyle\underset{x\rightarrow 0}{Lt}\left(cosec x-\dfrac{1}{x}\right)=?
  • 0
  • 1/2
  • 1
  • Does not exits
The value of \displaystyle \lim_{x\rightarrow 0}\dfrac {1-\cos^{3}x}{x\sin x\cos x} is
  • \dfrac {2}{5}
  • \dfrac {3}{5}
  • \dfrac {3}{2}
  • \dfrac {3}{4}
\displaystyle \lim_{x \rightarrow 0}\dfrac {1}{x\sqrt {x}}\left(a\ arc\ tan \dfrac {\sqrt {x}}{a}-b\ arc\ \tan \dfrac {\sqrt {x}}{b}\right) has the value equal to
  • \dfrac {a-b}{3}
  • 0
  • \dfrac {(a^{2}-b^{2})}{6a^{2}b^{2}}
  • \dfrac {a^{2}-b^{2}}{3a^{2}b^{2}}
Integrate:
 lim_{x\rightarrow 0}\dfrac{(1-\cos{2x})^{2}}{2x\tan{x}-x\tan{2x}}
  • 2
  • \dfrac{-1}{2}
  • -2
  • \dfrac{1}{2}
\displaystyle\lim_{n\rightarrow \infty}\left(\tan\theta +\dfrac{1}{2}\tan \dfrac{\theta}{2}+\dfrac{1}{2^2}\tan \dfrac{\theta}{2^2}+...+\dfrac{1}{2^n}\tan\dfrac{\theta}{2^n}\right) equals?
  • \dfrac{1}{\theta}
  • \dfrac{1}{\theta}-2\cot 2\theta
  • 2\cot 2\theta
  • None of these
\displaystyle \lim_{x\rightarrow \infty}{x^{2}\sin\left(\log_{e}\sqrt{\cos\dfrac{\pi}{x}}\right)}
  • 0
  • -\dfrac{\pi^{2}}{2}
  • -\dfrac{\pi^{2}}{4}
  • -\dfrac{\pi^{2}}{8}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers