Loading [MathJax]/jax/element/mml/optable/MathOperators.js
MCQExams
0:0:3
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 13 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 13
For the function,
f
(
x
)
=
(
x
−
1
x
)
2
, the first derivative with respect to x is
Report Question
0%
2
(
x
−
1
x
3
)
0%
2
(
x
−
1
x
)
0%
2
(
x
+
1
x
2
)
0%
2
(
x
−
1
x
2
)
lim
θ
→
π
/
2
1
−
sin
θ
(
π
/
2
−
θ
)
cos
θ
is equal to
Report Question
0%
1
0%
−
1
0%
1
/
2
0%
−
1
/
2
If x + y = sin (x + y) then
d
y
d
x
=
Report Question
0%
1
2
0%
0
0%
-1
0%
1
3
lim
n
→
∞
1
n
2
[
sin
3
π
4
n
+
2
sin
3
2
π
4
n
+
3
sin
3
3
π
4
n
+
.
.
.
.
+
n
sin
3
n
π
4
n
]
=
Report Question
0%
√
2
9
π
2
(
52
−
15
π
)
0%
√
2
9
π
2
(
52
+
15
π
)
0%
√
2
9
π
(
52
−
17
π
)
0%
√
2
9
π
2
(
52
+
17
π
)
lim
−
x
→
0
1
−
c
o
s
(
1
−
c
o
s
4
x
)
x
4
is equal to :
Report Question
0%
4
0%
16
0%
32
0%
None of these
l
i
m
x
→
0
(
(
1
+
x
)
1
x
e
)
1
s
i
n
x
is equal to
Report Question
0%
√
e
0%
e
0%
1
√
e
0%
1/e
l
i
m
x
→
0
(
25
)
x
−
2
(
15
)
x
+
9
x
c
o
s
6
x
−
c
o
s
2
x
is equal to :
Report Question
0%
l
o
g
(
5
3
)
0%
1
4
l
o
g
15
0%
−
1
16
(
5
3
)
2
0%
l
o
g
(
3
5
)
Arrange the following limits in the ascending
order :
(1)
lim
x
→
∞
(
1
+
x
2
+
x
)
x
+
2
(2)
lim
x
→
0
(
1
+
2
x
)
3
/
x
(3)
lim
θ
→
0
sin
θ
2
θ
(4)
lim
x
→
0
log
e
(
1
+
x
)
x
Report Question
0%
1
,
2
,
3
,
4
0%
1
,
3
,
4
,
2
0%
1
,
4
,
3
,
2
0%
3
,
4
,
1
,
2
Explanation
(i)
l
i
m
x
→
∞
(
1
+
x
2
+
x
)
x
+
2
=
(
1
x
+
1
2
x
+
1
)
x
+
2
=
l
i
m
x
→
∞
e
l
n
(
1
+
x
2
+
x
)
2
+
x
=
e
l
t
x
→
∞
(
2
+
x
)
l
n
(
1
+
x
2
+
x
)
=
e
l
t
x
→
∞
l
n
(
1
+
x
)
−
l
n
(
2
+
x
)
(
1
/
2
+
x
)
=
e
l
t
x
→
∞
1
1
+
x
−
1
2
+
x
−
1
(
2
+
x
)
2
=
e
l
t
x
→
∞
(
2
+
x
)
2
[
(
2
+
x
)
−
(
1
+
x
)
]
(
2
+
x
)
−
(
1
+
x
)
(
2
+
x
)
(
1
+
x
)
=
e
l
t
x
→
∞
(
2
+
x
)
1
+
x
=
e
1
(ii)
l
i
m
x
→
0
(
1
+
2
x
)
3
/
x
=
e
l
t
x
→
0
(
2
x
)
3
/
x
=
e
6
(iii)
l
t
θ
→
0
sin
θ
2
θ
=
l
t
θ
→
0
cos
θ
2
=
1
2
(iv)
l
t
x
→
0
l
o
g
e
(
1
+
x
)
x
.
l
t
x
→
0
1
1
+
x
=
1
∴
3<4<1<2
.
If z = z(x) and
(2cosx)\frac { dz }{ dx } +(sinx)z=sinx
, z(0) = 3, then
z(\frac { \pi }{ 2 } )
equals :
Report Question
0%
1
0%
\frac { 3 }{ 2 }
0%
\frac { 5 }{ 2 }
0%
\frac { 1 }{ 2 }
\underset { x\rightarrow 0 }{ lim } \dfrac { x\tan { 2x } -2\tan { 2x } }{ { \left( 1-cos2x \right) } }
equals:
Report Question
0%
\dfrac{1}{4}
0%
1
0%
\dfrac{1}{2}
0%
-\dfrac{1}{2}
If
\mathop {\lim }\limits_{x \to 0} \frac{{x\left( {1 + a\cos x} \right) - b\sin x}}{{{x^3}}} = 1,
then
Report Question
0%
a = \frac{5}{2}
0%
b = \frac{{ - 5}}{2}
0%
a + b = 4
0%
a + b = -4
lim_{n\to \infty} \Sigma^n_{r=1} \dfrac{\pi}{n} sin(\dfrac{\pi r}{n})
is equal to
Report Question
0%
1
0%
2
0%
3
0%
4
Evaluate :
\displaystyle\lim _{ x\rightarrow 0 }{ \left( \dfrac { { e }^{ x\ell n\left( { 3 }^{ x }-1 \right) }-\left( { 3 }^{ x }-1 \right) ^{ x }\sin { x } }{ { e }^{ x\ell nx } } \right) }
is equal to
Report Question
0%
\dfrac{1}{e}\ell n3
0%
e\ \ell n\ 3
0%
3
0%
\dfrac{1}{3}
The value of
\displaystyle\lim_{x\to 0} |x|^{sinx}
equals
Report Question
0%
0
0%
-1
0%
1
0%
does not exist
If
\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \left( \sin { nx } \right) \left[ (a-n)nx-tanx \right] }{ { x }^{ 2 } } } =0
, then the value of
a
Report Question
0%
\dfrac { 1 }{ n }
0%
n-\dfrac { 1 }{ n }
0%
n+\dfrac{1}{n}
0%
None\ of\ these
\displaystyle \lim_{x\rightarrow0 }{\dfrac{(\cos\alpha)^{x}-(\sin\alpha)^{x}-\cos 2\alpha}{(x-4)}}, \alpha\in \left(0, \dfrac{\pi}{2}\right)
is equal to
Report Question
0%
\cos^{4}\alpha.\log(\cos\alpha)-\sin^{4}\alpha.\log(\sin\alpha)
0%
\sin^{4}\alpha.\log(\cos\alpha)-\cos^{4}\alpha.\log(\sin\alpha)
0%
\sin^{4}\alpha.\log(\cos\alpha)+\cos^{4}\alpha.\log(\sin\alpha)
0%
None\ of\ the \ above
\underset { x\rightarrow 0 }{ Lt } \cfrac {tanx-x}{x^2tanx}
equals:
Report Question
0%
1
0%
1/2
0%
1/3
0%
None of these
evaluate
\underset { x\rightarrow 0 }{ lim } \frac { x-\int _{ 0 }^{ x }{ { cost }^{ 2 }dt } }{ { x }^{ 3 }-6x }
Report Question
0%
3
0%
-1
0%
0
0%
1
\displaystyle\lim_{x \to \pi/2} (sec x +tan x)
is equal to
Report Question
0%
1
0%
-1
0%
\dfrac{1}{2}
0%
0
The value f
\lim_{x\rightarrow \pi/4}\dfrac{\sqrt{1-\sqrt{\sin 2x}}}{\pi-4x}=
Report Question
0%
-\dfrac{1}{4}
0%
\dfrac{1}{4}
0%
\dfrac{1}{2}
0%
None\ of\ these
\displaystyle\lim_{x\rightarrow \infty}\left(\dfrac{x+1}{2x+1}\right)^{x^2}
equals?
Report Question
0%
0
0%
e
0%
1
0%
\infty
\underset { x\rightarrow \pi/2 }{ lim } \left(\dfrac{cosec x-1}{cot^2x}\right)=
Report Question
0%
0
0%
-\dfrac{1}{2}
0%
\dfrac{1}{2}
0%
1
If
\displaystyle \lim_{x\rightarrow 0}\dfrac {ae^{-x}-b\cos x-\dfrac {1}{2}cx}{x\cos x}=2
then the value of
a+b+c
is-
Report Question
0%
4
0%
-4
0%
2
0%
-2
\underset{x \rightarrow 2}{lim} \dfrac{\sqrt[3]{60 + x^2} - 4}{\sin (x - 2)}
equals
Report Question
0%
\dfrac{1}{4}
0%
0
0%
\dfrac{1}{12}
0%
Does not exist
lim_{x\to \dfrac{\pi}{2}} tan^2x(\sqrt{2sin^2x + 3 sin x +4} - \sqrt{sin^2x + 6 sin x+2})
is equal to
Report Question
0%
\dfrac{3}{4}
0%
\dfrac{1}{6}
0%
\dfrac{1}{12}
0%
\dfrac{5}{12}
\lim _ { x \rightarrow 0 } \frac { 1 - \cos x } { x \log ( 1 + x ) } =
Report Question
0%
1
0%
0
0%
-1
0%
\frac { 1 } { 2 }
The value of
\displaystyle\int^{\pi/2}_0ln|\tan x+\cot x|dx
is equal to?
Report Question
0%
\pi ln 2
0%
-\pi ln 2
0%
\dfrac{\pi}{2} ln 2
0%
-\dfrac{\pi}{2} ln 2
\underset { x\rightarrow 0 }{ lim } (\cos x+a\sin b{ x) }^{ \frac { 1 }{ x } }
is equal to
Report Question
0%
e^a
0%
e^{ab}
0%
e^b
0%
e^{a/b}
The values of
\displaystyle\lim_{n\rightarrow \infty}\dfrac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt[2]{n^3+1}}
is?
Report Question
0%
1
0%
0
0%
-1
0%
\infty
Let
f
be a differentiable function such that
f'(x) = 7- \dfrac{3}{4}\dfrac{f(x)}{x}, (x > 0)
and
f(1) \neq 4
.
Then
\underset{x\to 0^+}{\lim} xf \left(\dfrac{1}{x}\right)
:
Report Question
0%
Exists and equals 4
0%
Does not exist
0%
Exist and equals
0%
Exists and equals
\dfrac{4}{7}
Explanation
f'(x) = 7 -\dfrac{3}{4}\dfrac{f(x)}{x}
(x > 0)
Given
f(1) \neq 4
\underset{x\to 0^+}{\lim} xf\left(\dfrac{1}{x}\right) = ?
\dfrac{dy}{dx} + \dfrac{3}{4}\dfrac{y}{x} = 7
(This is LDE)
IF
=e^{\int \tfrac{3}{4x}dx} = e^{\tfrac{3}{4}ln|x|} = x^{\tfrac{3}{4}}
y.x^{\frac{3}{4}} =\int 7.x^{\frac{3}{4}} dx
y.x^{\frac{3}{4}} = 7.\dfrac{x^{\frac{7}{4}}}{\frac{7}{4}} + C
f(x) = 4x+C.x^{-\frac{3}{4}}
f\left(\dfrac{1}{x}\right) = \dfrac{4}{x} + C.x^{\frac{3}{4}}
\underset{x\to 0^+}{\lim} xf\left(\dfrac{1}{x}\right) = \underset{x\to 0^+}{\lim}\left(4+C.x^{\frac{7}{4}}\right) = 4
0:0:3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page