Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 13 - MCQExams.com

For the function, f(x)=(x1x)2, the first derivative with respect to x is 
  • 2(x1x3)
  • 2(x1x)
  • 2(x+1x2)
  • 2(x1x2)
limθπ/21sinθ(π/2θ)cosθ is equal to
  • 1
  • 1
  • 1/2
  • 1/2
If x + y = sin (x + y) then dydx =
  • 12
  • 0
  • -1
  • 13
limn1n2[sin3π4n+2sin32π4n+3sin33π4n+....+nsin3nπ4n]=
  • 29π2(5215π)
  • 29π2(52+15π)
  • 29π(5217π)
  • 29π2(52+17π)
limx0 1cos(1cos4x)x4 is equal to : 
  • 4
  • 16
  • 32
  • None of these
limx0((1+x)1xe)1sinx is equal to 
  • e
  • e
  • 1e
  • 1/e
limx0(25)x2(15)x+9xcos6xcos2x is equal to :
  • log(53)
  • 14log15
  • 116(53)2
  • log(35)
Arrange the following limits in the ascending order :
(1)  limx(1+x2+x)x+2

(2)  limx0(1+2x)3/x

(3)  limθ0sinθ2θ

(4)  limx0loge(1+x)x
  • 1,2,3,4
  • 1,3,4,2
  • 1,4,3,2
  • 3,4,1,2
If z = z(x) and (2cosx)\frac { dz }{ dx } +(sinx)z=sinx, z(0) = 3, then z(\frac { \pi  }{ 2 } ) equals :
  • 1
  • \frac { 3 }{ 2 }
  • \frac { 5 }{ 2 }
  • \frac { 1 }{ 2 }
\underset { x\rightarrow 0 }{ lim } \dfrac { x\tan { 2x } -2\tan { 2x }  }{ { \left( 1-cos2x \right)  } } equals:
  • \dfrac{1}{4}
  • 1
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
If \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {1 + a\cos x} \right) - b\sin x}}{{{x^3}}} = 1, then
  • a = \frac{5}{2}
  • b = \frac{{ - 5}}{2}
  • a + b = 4
  • a + b = -4
lim_{n\to \infty} \Sigma^n_{r=1} \dfrac{\pi}{n} sin(\dfrac{\pi r}{n}) is equal to
  • 1
  • 2
  • 3
  • 4
Evaluate : \displaystyle\lim _{ x\rightarrow 0 }{ \left( \dfrac { { e }^{ x\ell n\left( { 3 }^{ x }-1 \right)  }-\left( { 3 }^{ x }-1 \right) ^{ x }\sin { x }  }{ { e }^{ x\ell nx } }  \right)  } is equal to 
  • \dfrac{1}{e}\ell n3
  • e\ \ell n\ 3
  • 3
  • \dfrac{1}{3}
The value of \displaystyle\lim_{x\to 0} |x|^{sinx} equals 
  • 0
  • -1
  • 1
  • does not exist
If \displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \left( \sin { nx }  \right) \left[ (a-n)nx-tanx \right]  }{ { x }^{ 2 } }  } =0, then the value of a
  • \dfrac { 1 }{ n }
  • n-\dfrac { 1 }{ n }
  • n+\dfrac{1}{n}
  • None\ of\ these
\displaystyle \lim_{x\rightarrow0 }{\dfrac{(\cos\alpha)^{x}-(\sin\alpha)^{x}-\cos 2\alpha}{(x-4)}}, \alpha\in \left(0, \dfrac{\pi}{2}\right) is equal to
  • \cos^{4}\alpha.\log(\cos\alpha)-\sin^{4}\alpha.\log(\sin\alpha)
  • \sin^{4}\alpha.\log(\cos\alpha)-\cos^{4}\alpha.\log(\sin\alpha)
  • \sin^{4}\alpha.\log(\cos\alpha)+\cos^{4}\alpha.\log(\sin\alpha)
  • None\ of\ the \ above
\underset { x\rightarrow 0 }{ Lt } \cfrac {tanx-x}{x^2tanx} equals:
  • 1
  • 1/2
  • 1/3
  • None of these
evaluate \underset { x\rightarrow 0 }{ lim } \frac { x-\int _{ 0 }^{ x }{ { cost }^{ 2 }dt }  }{ { x }^{ 3 }-6x }
  • 3
  • -1
  • 0
  • 1
\displaystyle\lim_{x \to \pi/2} (sec x +tan x) is equal to 
  • 1
  • -1
  • \dfrac{1}{2}
  • 0
The value f \lim_{x\rightarrow \pi/4}\dfrac{\sqrt{1-\sqrt{\sin 2x}}}{\pi-4x}=
  • -\dfrac{1}{4}
  • \dfrac{1}{4}
  • \dfrac{1}{2}
  • None\ of\ these
\displaystyle\lim_{x\rightarrow \infty}\left(\dfrac{x+1}{2x+1}\right)^{x^2} equals?
  • 0
  • e
  • 1
  • \infty
\underset { x\rightarrow \pi/2 }{ lim } \left(\dfrac{cosec x-1}{cot^2x}\right)=
  • 0
  • -\dfrac{1}{2}
  • \dfrac{1}{2}
  • 1
If \displaystyle \lim_{x\rightarrow 0}\dfrac {ae^{-x}-b\cos x-\dfrac {1}{2}cx}{x\cos x}=2 then the value of a+b+c is-
  • 4
  • -4
  • 2
  • -2
\underset{x \rightarrow 2}{lim} \dfrac{\sqrt[3]{60 + x^2} - 4}{\sin (x - 2)} equals 
  • \dfrac{1}{4}
  • 0
  • \dfrac{1}{12}
  • Does not exist
lim_{x\to \dfrac{\pi}{2}} tan^2x(\sqrt{2sin^2x + 3 sin x +4} - \sqrt{sin^2x + 6 sin x+2}) is equal to
  • \dfrac{3}{4}
  • \dfrac{1}{6}
  • \dfrac{1}{12}
  • \dfrac{5}{12}
\lim _ { x \rightarrow 0 } \frac { 1 - \cos x } { x \log ( 1 + x ) } =
  • 1
  • 0
  • -1
  • \frac { 1 } { 2 }
The value of \displaystyle\int^{\pi/2}_0ln|\tan x+\cot x|dx is equal to?
  • \pi ln 2
  • -\pi ln 2
  • \dfrac{\pi}{2} ln 2
  • -\dfrac{\pi}{2} ln 2
\underset { x\rightarrow 0 }{ lim } (\cos  x+a\sin  b{ x) }^{ \frac { 1 }{ x }  } is equal to 
  • e^a
  • e^{ab}
  • e^b
  • e^{a/b}
The values of \displaystyle\lim_{n\rightarrow \infty}\dfrac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt[2]{n^3+1}} is?
  • 1
  • 0
  • -1
  • \infty
Let f be a differentiable function such that f'(x) = 7- \dfrac{3}{4}\dfrac{f(x)}{x}, (x > 0) and f(1) \neq 4.
Then \underset{x\to 0^+}{\lim} xf \left(\dfrac{1}{x}\right) :
  • Exists and equals 4
  • Does not exist
  • Exist and equals
  • Exists and equals \dfrac{4}{7}
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers