MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 14 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 14
$$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { x\tan { 2x } -2x\tan { x } }{ \left( 1-\cos { 2x } \right) ^{ 2 } } }$$ equal to
Report Question
0%
$$\dfrac{1}{4}$$
0%
$$1$$
0%
$$\dfrac{1}{2}$$
0%
$$None of these$$
$$\displaystyle\lim_{x\rightarrow \dfrac{\pi}{4}}\dfrac{\cos x-\sin x}{\left(\dfrac{\pi}{4}-x\right)(\cos x+\sin x)}=?$$
Report Question
0%
$$2$$
0%
$$1$$
0%
$$0$$
0%
$$3$$
If $$ \lim _{x \rightarrow 0}\left(\cos x+a^{3} \sin \left(b^{6} x\right)\right)^{\frac{1}{x}}=e^{512} $$
then value of $$ab^2$$ is equal to
Report Question
0%
$$-512$$
0%
$$512$$
0%
$$8$$
0%
none of these
$$if\left( x \right) =\left[ x-3 \right] +\left[ x-4 \right] \quad for\quad x\epsilon R\quad then\quad \underset { x\rightarrow 3 }{ lim } f\left( x \right) =$$
Report Question
0%
-2
0%
-1
0%
0
0%
2
The value of $$\int _{ 0 }^{ \left[ x \right] }{ \left( x-\left[ x \right] \right) dx\quad is\left( \left[ . \right] denotes\quad greatest\quad integer\quad function \right) } $$
Report Question
0%
$$\left[ x \right] $$
0%
$$2\left[ x \right] $$
0%
$$\dfrac { \left[ x \right] }{ 2 } $$
0%
$$3\left[ x \right] $$
$$\underset { x\rightarrow 0 }{ lim } \dfrac { 1-\cos { 2x } }{ \cos { 2x } -\cos { 8x } } $$ is equal to
Report Question
0%
$$-1/15$$
0%
$$1/10$$
0%
$$1/15$$
0%
$$15$$
The value of $$\underset { x\rightarrow 0 }{ lim } \frac { { 27 }^{ x }-{ 9 }^{ x }-{ 3 }^{ x }+1 }{ \sqrt { 5 } -\sqrt { 4+cosx } } $$ is
Report Question
0%
$$\sqrt { 5 } { \left( log3 \right) }^{ 2 }$$
0%
$$8\sqrt { 5 } log3$$
0%
$$16\sqrt { 5 } log3$$
0%
$$8\sqrt { 5 } { \left( log3 \right) }^{ 2 }$$
$$\lim _{ x\rightarrow 0 }{ \cfrac { x.{ 10 }^{ x }-x }{ 1-cosx } = } $$
Report Question
0%
$$\log { 10 } $$
0%
$$2\log { 10 } $$
0%
$$3\log { 10 } $$
0%
$$4\log { 10 } $$
$$\displaystyle \lim _ { x \rightarrow 0 } \dfrac { | \cos ( \sin ( 3 x ) ) | - 1 } { x ^ { 2 } }$$ equals
Report Question
0%
$$\dfrac { - 9 } { 2 }$$
0%
$$\dfrac { - 3 } { 2 }$$
0%
$$\dfrac { 3 } { 2 }$$
0%
$$\dfrac { 9 } { 2 }$$
$$\displaystyle \lim _ { x \rightarrow 0 } \left( \left[ \dfrac { - 5 \sin x } { x } \right] + \left[ \dfrac { 6 \sin x } { x } \right] \right)$$ (where $$[ .]$$ denotes greatest integer function) is equal to
Report Question
0%
$$0$$
0%
$$-12$$
0%
$$1$$
0%
$$2$$
If $$\underset { x\rightarrow 0 }{ lim } \dfrac { { x }^{ 3 } }{ \sqrt { a+x } (bx-sinx) } =1,$$ a > 0, then a + b is equal to
Report Question
0%
36
0%
37
0%
38
0%
40
$$\underset { x\rightarrow 0 }{ lim } \frac { sin({ 6x }^{ 2 }) }{ Incos({ 2x }^{ 2 }-x) } =$$
Report Question
0%
12
0%
-12
0%
6
0%
-6
$$\underset { x\rightarrow -\infty }{ lim } \frac { ({ 3x }^{ 4 }+{ 2x }^{ 2 })sin(\frac { 1 }{ x } )+{ |x| }^{ 3 }+5 }{ { |x }|^{ 3 }+{ |x| }^{ 2 }+|x|+1 } =$$
Report Question
0%
2
0%
1
0%
-2
0%
-3
$$\underset { x\rightarrow \frac { \pi }{ 2 } }{ lim } \frac { cotx-cosx }{ { (\pi -2x) }^{ 3 } } $$ equals :
Report Question
0%
$$\frac { 1 }{ 8 } $$
0%
$$\frac { 1 }{ 4 } $$
0%
$$\frac { 1 }{ 24 } $$
0%
$$\frac { 1 }{ 16 } $$
Let $$f\left( x \right)=asin\left| x \right| +{ be }^{ \left| x \right| }$$ is differentiable when
Report Question
0%
$$a=-b$$
0%
$$a=b$$
0%
$$a-0$$
0%
$$b=0$$
The value of $$\displaystyle \lim_{x\rightarrow 0}\left(\dfrac {1}{x^{2}}-\cot x\right)$$ equals
Report Question
0%
$$1$$
0%
$$0$$
0%
$$\infty$$
0%
$$Does\ not\ exist$$
$$\underset { \theta \longrightarrow 0 }{ Lt } \dfrac { 3tan\theta -tan3\theta }{ { 2\theta }^{ 3 } } =$$
Report Question
0%
1/4`
0%
3/4
0%
4
0%
-4
$$\underset { x\rightarrow 0 }{ Lt\quad } \frac { sec\quad x-1 }{ { \left( sec\quad x+\quad 1 \right) }^{ 2 } } =$$
Report Question
0%
1/8
0%
11/4
0%
3.2
0%
2
If $$u=f(x^{2}), v=g(x^{3}),f(x)=sinx, g^{1}(x)=cosx$$ then find $$\frac{du}{dv}$$
Report Question
0%
$$1$$
0%
$$\frac{2}{3}$$
0%
$$\frac{2sin x^{2}}{3xcos x^{3}}$$
0%
$$\frac{2x^{2}}{3x^{3}}$$
If $$\begin{matrix} lim\quad \\ x\rightarrow 0 \end{matrix}\dfrac { x\left( 1+acosx \right) -bsinx }{ { x }^{ 3 } } =1$$ then value of a + b
Report Question
0%
-4
0%
-6
0%
1
0%
None of these
Value of $$\underset { x\rightarrow 0 }{ lim } \dfrac { \sqrt [ 3 ]{ 1+\tan { x } } -\sqrt [ 3 ]{ 1-\tan { x } } }{ x } $$ is
Report Question
0%
$$\dfrac { 1 }{ 2 } $$
0%
$$-\dfrac { 2 }{ 3 } $$
0%
$$\dfrac { 1 }{ 3 } $$
0%
$$0$$
$$\lim _{ x\rightarrow 0 }{ \frac { \sqrt [ 3 ]{ 1+\sin { x } } -\sqrt [ 3 ]{ 1-\sin { x } } }{ x } } =$$
Report Question
0%
$$0$$
0%
$$1$$
0%
$$\frac { 2 }{ 3 } $$
0%
$$\frac { 3 }{ 2 } $$
Value of $$\underset { x\rightarrow \dfrac { \pi }{ 2 } }{ lim } \tan { x } .\ell nsin{ x }$$ is
Report Question
0%
0
0%
$$\dfrac { 1 }{ 2 } $$
0%
$$\dfrac { 3 }{ 4 } $$
0%
None of these
If $$cosy=xcos(a+y)and\quad \cfrac { dy }{ dx } =\cfrac { k }{ 1+{ x }^{ 2 }-2xcosa } $$ then find value of k?
Report Question
0%
sin a
0%
cos a
0%
1
0%
-sin a
$$\underset { x\rightarrow 0 }{ lim } \left( \dfrac { 1+tanx }{ 1+sinx } \right) ^{ cosecx }$$ is equal to
Report Question
0%
e
0%
$$\dfrac { 1 }{ e } $$
0%
1
0%
None of these
The value of $$\displaystyle \lim _{ x\rightarrow \infty } (|x^{2}|+x)\log{(x\cot^{-1}{x})}$$ is :
Report Question
0%
$$\dfrac{1}{3}$$
0%
$$-\dfrac{1}{3}$$
0%
$$\dfrac{2}{3}$$
0%
$$-\dfrac{2}{3}$$
$$\displaystyle \lim _{ x\rightarrow \dfrac { \pi }{ 2 } }{ \dfrac { \sin { x } }{ \cos ^{ -1 }{ \left[ \dfrac { 1 }{ 4 } \left( 3\sin { x } -\sin { 3x } \right) \right] } } } $$, where [.] denotes greatest integer function is :
Report Question
0%
$$\dfrac{2}{\pi}$$
0%
$$1$$
0%
$$\dfrac{4}{\pi}$$
0%
$$does\ not\ exist$$
$$\lim _ { x \rightarrow \frac { \pi } { 2 } } \left( \frac { 1 + \cos x } { 1 - \cos x } \right) ^ { \sec x } =$$
Report Question
0%
e
0%
$$e^2$$
0%
$$e^3$$
0%
$$e/4$$
$$Im _{ }{ \left( \dfrac { 1 }{ 1-\cos { \theta } +i\sin { \theta } } \right) } $$ is equal to
Report Question
0%
$$\dfrac{1}{2}\tan\dfrac{\theta}{2}$$
0%
$$\dfrac{1}{2}\cot\dfrac{\theta}{2}$$
0%
$$-\dfrac{1}{2}\tan\dfrac{\theta}{2}$$`
0%
$$-\dfrac{1}{2}\cot\dfrac{\theta}{2}$$
$$L\underset { x\rightarrow 0 }{ im } \frac { \sec { 4x-\sec { 2x } } }{ \sec { 3x-\sec { x } } }=$$
Report Question
0%
3/2
0%
2/3
0%
1/3
0%
3/4
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page