Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 14 - MCQExams.com

limx0xtan2x2xtanx(1cos2x)2 equal to 
  • 14
  • 1
  • 12
  • Noneofthese
limxπ4cosxsinx(π4x)(cosx+sinx)=?
  • 2
  • 1
  • 0
  • 3
If limx0(cosx+a3sin(b6x))1x=e512 then value of ab2 is equal to
  • 512
  • 512
  • 8
  • none of these
if(x)=[x3]+[x4]forxϵRthenlimx3f(x)=
  • -2
  • -1
  • 0
  • 2
The value of [x]0(x[x])dxis([.]denotesgreatestintegerfunction)
  • [x]
  • 2[x]
  • [x]2
  • 3[x]
limx01cos2xcos2xcos8x is equal to 
  • 1/15
  • 1/10
  • 1/15
  • 15
The value of limx027x9x3x+154+cosx is 
  • 5(log3)2
  • 85log3
  • 165log3
  • 85(log3)2
limx0x.10xx1cosx=
  • log10
  • 2log10
  • 3log10
  • 4log10
limx0|cos(sin(3x))|1x2   equals
  • 92
  • 32
  • 32
  • 92
limx0([5sinxx]+[6sinxx])  (where  [.]  denotes greatest integer function) is equal to
  • 0
  • 12
  • 1
  • 2
If limx0x3a+x(bxsinx)=1, a > 0, then a + b is equal to 
  • 36
  • 37
  • 38
  • 40
limx0sin(6x2)Incos(2x2x)=
  • 12
  • -12
  • 6
  • -6
limx(3x4+2x2)sin(1x)+|x|3+5|x|3+|x|2+|x|+1=
  • 2
  • 1
  • -2
  • -3
limxπ2cotxcosx(π2x)3 equals :
  • 18
  • 14
  • 124
  • 116
Let f(x)=asin|x|+be|x| is differentiable when
  • a=b
  • a=b
  • a0
  • b=0
The value of limx0(1x2cotx) equals
  • 1
  • 0
  • Does not exist
Ltθ03tanθtan3θ2θ3=
  • 1/4`
  • 3/4
  • 4
  • -4
Ltx0secx1(secx+1)2=
  • 1/8
  • 11/4
  • 3.2
  • 2
If u=f(x2),v=g(x3),f(x)=sinx,g1(x)=cosx then find dudv
  • 1
  • 23
  • 2sinx23xcosx3
  • 2x23x3
If limx0x(1+acosx)bsinxx3=1 then value of a + b 
  • -4
  • -6
  • 1
  • None of these
Value of limx031+tanx31tanxx is
  • 12
  • 23
  • 13
  • 0
limx031+sinx31sinxx=
  • 0
  • 1
  • 23
  • 32
Value of limxπ2tanx.nsinx is 
  • 0
  • 12
  • 34
  • None of these
If cosy=xcos(a+y)anddydx=k1+x22xcosa then find value of k?
  • sin a
  • cos a
  • 1
  • -sin a
limx0(1+tanx1+sinx)cosecx is equal to
  • e
  • 1e
  • 1
  • None of these
The value of limx(|x2|+x)log(xcot1x) is :
  • 13
  • 13
  • 23
  • 23
limxπ2sinxcos1[14(3sinxsin3x)], where [.] denotes greatest integer function is :
  • 2π
  • 1
  • 4π
  • does not exist
limxπ2(1+cosx1cosx)secx=
  • e
  • e2
  • e3
  • e/4
Im(11cosθ+isinθ) is equal to
  • 12tanθ2
  • 12cotθ2
  • 12tanθ2`
  • 12cotθ2
Limx0sec4xsec2xsec3xsecx=
  • 3/2
  • 2/3
  • 1/3
  • 3/4
0:0:4


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers